Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
基本信息
- 批准号:10630757
- 负责人:
- 金额:$ 11.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adverse eventAffectAnatomyAnimal ModelAnti-Cytokine TherapyApoptosisAutoimmune DiseasesBiological Response Modifier TherapyCartilageCell TherapyCellsChronicClinicalClinical TrialsClinical assessmentsCollagen ArthritisComplexDataDegenerative polyarthritisDevelopmentDiagnosisDisabled PersonsDiseaseEarly DiagnosisEarly treatmentEmission-Computed TomographyEngineeringEnzymesFlareFutureGeneticGenetic EngineeringGoalsGoldHealth PromotionHistologicImageImaging technologyImplantIn VitroInflammationInflammatoryInflammatory ArthritisInterleukin-1Interleukin-6InterventionJointsK/BxN modelLaboratoriesLightMeasurementMeasuresMentorshipMetabolicMethodologyModelingMolecularMonitorMusMusculoskeletalOsteoclastsOsteogenesisOsteoporosisOutputPain MeasurementPatientsPatternPhysical ExaminationPopulationPositron-Emission TomographyPrediction of Response to TherapyPreventionProcessProductionReceptor GeneReportingResearchRheumatoid ArthritisSafetySeriesSerumSiteSynovial MembraneSystemTNF geneTestingTherapeutic InterventionTimeTissuesTracerTranslatingX-Ray Computed Tomographyarthritis therapyarthropathiesbasebonebone erosionbone metabolismbone turnovercareer developmentclinical remissioncollagen antibody induced arthritiscytokinedesignengineered stem cellsfluorodeoxyglucoseimaging biomarkerimaging modalityin vivoineffective therapiesinsightjoint inflammationmicroCTmolecular imagingmouse modelnext generationnoveloutcome predictionpersonalized medicinepreservationradiological imagingresponsespatiotemporaltherapy resistanttranslational goaltranslational scientisttreatment responseuptake
项目摘要
PROJECT SUMMARY/ABSTRACT
Rheumatoid arthritis (RA) is the most common chronic inflammatory and destructive joint disease, affecting 1%
of the population worldwide. Perpetuation of inflammatory processes within the synovial tissue leads to local
activation of tissue‐degrading enzymes and formation of bone‐resorbing osteoclasts, provoking progressive
cartilage and bone destruction. Therefore, early diagnosis of inflammatory processes and prevention of bone
and cartilage destruction are crucial to preserve function in RA. Currently, early assessment of RA disease
activity and response to therapy mainly consists of physical examination, patient reports, and laboratory
analyses. Thus, there is a clear need to develop precision-based therapy for patients with RA in tandem with
non-invasive molecular imaging to predict therapeutic response, and limit adverse events and ineffective
therapies. Conventional radiography remains the first choice for the assessment of structural bone and cartilage
damage in RA patients. Novel imaging methods, such as combined positron emission tomography/computed
tomography (PET/CT) provide insights into pathophysiological processes together with whole-body anatomical
localization. 18F-FDG has been used to localize articular inflammatory processes in patients suffering from RA;
showing not only increased uptake of 18F-FDG in inflamed joints, but also a strong correlation with disease
activity. PET imaging with the bone tracer 18F-NaF has shown high bone turnover in RA, osteoarthritis, and
osteoporosis. Our group has developed cell-based implants that can deliver multiplexed anti-cytokine therapies
for treating rheumatoid arthritis (RA) or other autoimmune diseases in a self-regulating manner for extended
durations. Our approach is to longitudinally characterize pattern and intensity of joint inflammation and bone
erosion to identify changes that reflect sensitivity or resistance to the therapy administered. The overall
translational goal is to leverage imaging methodologies with imaging biomarkers to assess the efficacy of next
generation cell-based therapies using in vivo mouse models of RA. This approach will enable us to systematically
test our central hypothesis: RA inflammation and bone erosion will be reversed after therapeutic intervention. To
test this hypothesis in a site-specific manner, we will assess spatio-temporal metabolic changes in synovium and
bone leveraging 18F-FDG and 18F-NaF PET/CT. Our comprehensive approach using molecular imaging
biomarkers will better inform our assessment of different biologic therapies in mice. We expect this study to
provide data that shifts our current understanding about RA therapies and intervention response. This research
will influence the design of future studies and clinical trials aimed at identifying personalized therapies in
rheumatic and other musculoskeletal inflammatory conditions. Under the mentorship of Drs. Guilak and Pham,
this supplement will allow me to achieve my career development goal of becoming an independent translational
scientist with research focused on promoting the health of patients by developing imaging biomarkers to
diagnose, monitor, and predict outcomes of cell-based therapies in inflammatory arthritis.
项目摘要/摘要
类风湿关节炎(RA)是最常见的慢性炎症性和破坏性关节疾病,影响1%
全球人口。滑膜组织内炎症过程的延续导致局部
组织降解酶的激活和骨呈现骨细胞的形成,引起渐进性
软骨和骨骼破坏。因此,炎症过程的早期诊断和预防骨骼
软骨破坏对于保留RA的功能至关重要。目前,对RA病的早期评估
活动和对治疗的反应主要包括体格检查,患者报告和实验室
分析。这很明显需要针对RA患者与
非侵入性分子成像以预测治疗反应,并限制广告事件和无效
疗法。常规X线摄影仍然是评估结构骨和软骨的首选
RA患者的损害。新颖的成像方法,例如正电子发射断层扫描/计算
断层扫描(PET/CT)提供了对病理生理过程的见解以及全身解剖学
本土化。 18F-FDG已被用来定位患有RA患者的关节炎症过程;
不仅显示出发炎的关节中18f-fdg的摄取增加,而且与疾病有很强的相关性
活动。用骨示踪剂18F-NAF进行宠物成像,在RA,骨关节炎和
骨质疏松症。我们的小组开发了基于细胞的Imprans,可以提供多路复用的抗循环疗法
用于治疗类风湿关节炎(RA)或其他自身免疫性疾病以自我调节方式扩展
持续时间。我们的方法是纵向表征关节注射和骨骼的模式和强度
侵蚀以识别反映对治疗敏感性或抵抗力的变化。总体
翻译目标是利用成像生物标志物的成像方法来评估下一个的效率
使用RA的体内小鼠模型基于生成细胞的疗法。这种方法将使我们能够系统地
测试我们的中心假设:治疗干预后,RA炎症和骨侵蚀将被逆转。到
以特定地点的方式检验该假设,我们将评估滑膜的时空代谢变化和
利用18F-FDG和18F-NAF PET/CT的骨骼。我们使用分子成像的全面方法
生物标志物将更好地告知我们对小鼠不同生物疗法的评估。我们希望这项研究能够
提供可以改变我们当前对RA疗法和干预反应的数据。这项研究
将影响旨在识别个性化疗法的未来研究和临床试验的设计
风湿性和其他肌肉骨骼炎症条件。在Drs的精神状态下。 Guilak和Pham,
这种补充剂将使我实现成为独立翻译的职业发展目标
研究的科学家专注于通过开发成像生物标志物来促进患者的健康
诊断,监测和预测炎症性关节炎中基于细胞的疗法的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farshid Guilak其他文献
Farshid Guilak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farshid Guilak', 18)}}的其他基金
Synthetic Chronogenetic Gene Circuits for Circadian Cell Therapies
用于昼夜节律细胞疗法的合成计时基因电路
- 批准号:
10797183 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
2023 Cartilage Biology and Pathology Gordon Research Conference and Gordon Research Seminar
2023年软骨生物学与病理学戈登研究会议暨戈登研究研讨会
- 批准号:
10605625 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Deconstructing Cartilage Mechanotransduction by Piezo Channels
通过压电通道解构软骨机械传导
- 批准号:
10533155 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
SMART stem cells that autonomously down-modulate TFG-β signaling for Articular Cartilage Repair
SMART 干细胞自主下调 TFG-β 信号传导以修复关节软骨
- 批准号:
10371823 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10707979 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
- 批准号:
10598619 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
- 批准号:
10434316 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
SMART stem cells that autonomously down-modulate TFG-β signaling for Articular Cartilage Repair
SMART 干细胞自主下调 TFG-β 信号传导以修复关节软骨
- 批准号:
10590752 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
- 批准号:
10831324 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Applying induced pluripotent stem cell derived endothelial cells to regenerative therapy in chronic limb threatening ischemia
将诱导多能干细胞衍生的内皮细胞应用于慢性肢体威胁性缺血的再生治疗
- 批准号:
10701387 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
Intermediate-sized Expanded Access Protocol for CNM-Au8 in Amyotrophic Lateral Sclerosis (ALS).
CNM-Au8 在肌萎缩侧索硬化症 (ALS) 中的中等规模扩展访问协议。
- 批准号:
10835565 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
Hemorrhagic transformation associated with delayed reperfusion in perinatal and childhood ischemic stroke: brain maturation-dependent role of leukocytes
与围产期和儿童缺血性卒中延迟再灌注相关的出血性转化:白细胞的脑成熟依赖性作用
- 批准号:
10811475 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
Interventional method development for multiplexed personalized drug evaluation using implantable microdevices
使用植入式微型设备进行多重个性化药物评估的介入方法开发
- 批准号:
10727646 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
Ventral pallidal transcriptional adaptations underlying punishment-resistant opioid intake
腹侧苍白球转录适应是抗惩罚阿片类药物摄入的基础
- 批准号:
10775468 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别: