Causal graphical methods for high-dimensional heterogeneous biomedical data
高维异构生物医学数据的因果图方法
基本信息
- 批准号:10625257
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-21 至 2025-03-20
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBiologicalCellsClinicalComplexDataData AnalyticsData SetDevelopmentDimensionsEventExplosionGenerationsGenesGraphHeterogeneityImmunologicsIndividualIntensive Care UnitsInterventionIntubationInvestigationLearningLifeMalignant NeoplasmsMeasuresMedicalMedicineMethodologyMethodsMiningModelingMortality DeterminantsMotivationOutcomePatientsPerformancePeriodicityPhenotypeProcessPropertyRNAResearchResearch PersonnelResolutionSkeletonStructureSystemTestingThe Cancer Genome AtlasTimeValidationVentilatorWorkanalytical methodcancer carecausal modelcell typeclinically relevantcohortcomplex datacopingexperimental studyflexibilitygene regulatory networkgraph learninghigh dimensionalityimprovedlearning algorithmlearning strategymachine learning methodmalignant breast neoplasmmethod developmentmodel designmortalitymultidimensional datamultiple omicsnovelpredictive modelingprognostic modelsingle-cell RNA sequencingtoolvector
项目摘要
In the past decade, there has been an explosion of data collected from biological and biomedical systems, both
in terms of type and volume. Mining these high-dimensional, heterogeneous, and often dynamic datasets to
make biologically or medically important inferences or develop predictive models requires new sophisticated
data analytics methods. New machine learning methods have begun filling this gap, but most of these methods
generate “black box” models that lack clear interpretability. Additionally, these methods are associative, and are
thus incapable of teasing out the complex cause-effect relationships among features in the dataset. Directed
causal graphical models (DCGMs) are a powerful tool for filling this gap. DCGMs, learned from observational
datasets, can represent causal relationships between variables. This allows DCGMs to generate hypotheses of
mechanisms and construct parsimonious, causally informed predictive models. However, biomedical datasets
often have features that make it difficult to construct causal graphical models over the full dataset. Examples
include: data type heterogeneity, high dimensionality, multicollinearity, cyclicity, and nonstationarity. To address
these problems, I propose to develop methods for learning causal graphs in datasets containing (1) a
heterogeneous mixture of continuous, categorical, and censored variables, (2) high dimensionality and
multicollinearity, and (3) cyclicity and nonstationarity. In Aim 1, I will develop a new causal discovery algorithm
that accommodates continuous, categorical and censored variables (e.g., survival). In Aim 2, I will test and
compare various methods for matrix decomposition and dimensionality reduction in their ability to learn a
meaningful low-dimensional latent feature space to be used in graph learning methods. In Aim 3, I will develop
a new method for causal discovery in dynamic, possibly cyclic, gene regulatory networks at single cell resolution.
In all cases, testing and validation will be performed on synthetic and real-life publicly available datasets. These
methodological improvements constitute important steps forward in the field of causal discovery and they can
be utilized together or independently to provide a flexible and powerful platform for analysis of a wide range of
biomedical datasets. Once made available, they will enable researchers to make inferences about causal
mechanisms, generate hypotheses, and build robust, parsimonious predictive models.
在过去的十年中,这是从生物和生物医学系统中收集的数据的爆炸
在类型和音量方面。
进行生物学或医学上重要的推论或开发预测模型要求新的复杂性
数据分析方法。
生成缺乏明确解释的“黑匣子”模型。
因此,无法逗弄数据集中特征之间复杂的因果关系。
因果图形模型(DCGM)是从观察值中学到的强大工具。
数据集,可以压制变量之间的因果关系。
机制和构建了典型的因果信息预测模型。
通常具有使构建因果图形模型在完整示例上构建的特征
包括:数据类型异质性,高贵族性,多重共线性,周期性和非定理性。
这些问题,我建议开发在数据集中学习因果图的方法(1)A
连续,分类和人口普查变量的异质混合物,(2)高率和高率
多连接性,(3)在AIM 1中,我将开发出一种新的Discovery算法
这可容纳连续的,分类和审查的变量(例如,在AIM 2中,我将测试和测试
比较矩阵分解和维度修复的各种方法的学习能力
在AIM 3中使用的有意义的低维潜在功能。
单个CELLE分辨率的动态,可能的循环,基因调节网络中因果发现的新方法。
在所有情况下,都将对可用的合成和真实公共生活进行测试和验证。
方法论改进构成了因果发现领域的重要步骤,它们可以
一起使用或独立利用,以提供一个灵活而强大的平台,以分析广泛的范围
生物医学数据集。
机制,产生假设并建立强大的,简约的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyler Lovelace其他文献
Tyler Lovelace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyler Lovelace', 18)}}的其他基金
Causal graphical methods for high-dimensional heterogeneous biomedical data
高维异构生物医学数据的因果图方法
- 批准号:
10388447 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Transcriptome and spatial analyses of tumor environment in addressing colorectal cancer racial and ethnical disparities
肿瘤环境的转录组和空间分析在解决结直肠癌种族和民族差异方面的作用
- 批准号:
10743201 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: