Causal graphical methods for high-dimensional heterogeneous biomedical data
高维异构生物医学数据的因果图方法
基本信息
- 批准号:10388447
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-21 至 2025-03-20
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBiologicalCategoriesCellsClinicalComplexDataData AnalyticsData SetDevelopmentDimensionsEventExplosionGenerationsGenesGraphHeterogeneityImmunologicsIndividualIntensive Care UnitsInterventionInvestigationLearningLifeMalignant NeoplasmsMeasuresMedicalMedicineMethodologyMethodsMiningModelingMortality DeterminantsMotivationOutcomePatientsPerformancePeriodicityPhenotypeProcessPropertyRNAResearchResearch PersonnelResolutionSkeletonStructureSystemTestingThe Cancer Genome AtlasTimeValidationVentilatorWorkanalytical methodcancer carecausal modelcell typeclinically relevantcohortcomplex datadesignexperimental studyflexibilitygene regulatory networkgraph learninghigh dimensionalitylearning algorithmlearning strategymachine learning methodmalignant breast neoplasmmethod developmentmortalitymultiple omicsnovelpredictive modelingprognostic modelsingle-cell RNA sequencingtoolvector
项目摘要
In the past decade, there has been an explosion of data collected from biological and biomedical systems, both
in terms of type and volume. Mining these high-dimensional, heterogeneous, and often dynamic datasets to
make biologically or medically important inferences or develop predictive models requires new sophisticated
data analytics methods. New machine learning methods have begun filling this gap, but most of these methods
generate “black box” models that lack clear interpretability. Additionally, these methods are associative, and are
thus incapable of teasing out the complex cause-effect relationships among features in the dataset. Directed
causal graphical models (DCGMs) are a powerful tool for filling this gap. DCGMs, learned from observational
datasets, can represent causal relationships between variables. This allows DCGMs to generate hypotheses of
mechanisms and construct parsimonious, causally informed predictive models. However, biomedical datasets
often have features that make it difficult to construct causal graphical models over the full dataset. Examples
include: data type heterogeneity, high dimensionality, multicollinearity, cyclicity, and nonstationarity. To address
these problems, I propose to develop methods for learning causal graphs in datasets containing (1) a
heterogeneous mixture of continuous, categorical, and censored variables, (2) high dimensionality and
multicollinearity, and (3) cyclicity and nonstationarity. In Aim 1, I will develop a new causal discovery algorithm
that accommodates continuous, categorical and censored variables (e.g., survival). In Aim 2, I will test and
compare various methods for matrix decomposition and dimensionality reduction in their ability to learn a
meaningful low-dimensional latent feature space to be used in graph learning methods. In Aim 3, I will develop
a new method for causal discovery in dynamic, possibly cyclic, gene regulatory networks at single cell resolution.
In all cases, testing and validation will be performed on synthetic and real-life publicly available datasets. These
methodological improvements constitute important steps forward in the field of causal discovery and they can
be utilized together or independently to provide a flexible and powerful platform for analysis of a wide range of
biomedical datasets. Once made available, they will enable researchers to make inferences about causal
mechanisms, generate hypotheses, and build robust, parsimonious predictive models.
在过去的十年中,从生物和生物医学系统收集的数据激增
挖掘这些高维、异构且通常是动态的数据集
做出生物学或医学上重要的推论或开发预测模型需要新的复杂技术
新的机器学习方法已经开始填补这一空白,但其中大多数方法。
此外,这些方法是关联的,并且是缺乏明确可解释性的“黑盒”模型。
因此无法梳理出 Directed 数据集中特征之间复杂的因果关系。
因果图模型(DCGM)是从观察中学到的填补这一空白的强大工具。
数据集,可以表示变量之间的因果关系,这使得 DCGM 能够生成假设。
然而,生物医学数据集。
通常具有难以在完整数据集示例上构建因果图形模型的功能。
包括:数据类型异质性、高维性、多重共线性、周期性和非平稳性。
这些问题,我建议开发在包含(1)的数据集中学习因果图的方法
连续变量、分类变量和删失变量的异质混合,(2) 高维和
多重共线性,以及 (3) 周期性和非平稳性 在目标 1 中,我将开发一种新的因果发现算法。
容纳连续变量、分类变量和审查变量(例如,生存)。在目标 2 中,我将测试和
比较各种矩阵分解和降维方法的学习能力
在目标 3 中,我将开发用于图学习方法的有意义的低维潜在特征空间。
一种在单细胞分辨率下动态、可能循环的基因调控网络中因果发现的新方法。
在所有情况下,测试和验证都将在合成的和现实的公开数据集上进行。
方法论的改进是因果发现领域向前迈出的重要一步,它们可以
可以一起或独立使用,为各种分析提供灵活而强大的平台
一旦提供生物医学数据集,它们将使研究人员能够对因果关系做出推断。
机制、生成假设并建立稳健、简约的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyler Lovelace其他文献
Tyler Lovelace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyler Lovelace', 18)}}的其他基金
Causal graphical methods for high-dimensional heterogeneous biomedical data
高维异构生物医学数据的因果图方法
- 批准号:
10625257 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Transcriptome and spatial analyses of tumor environment in addressing colorectal cancer racial and ethnical disparities
肿瘤环境的转录组和空间分析在解决结直肠癌种族和民族差异方面的作用
- 批准号:
10743201 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: