Membrane trafficking to lysosomes
膜转运至溶酶体
基本信息
- 批准号:10620966
- 负责人:
- 金额:$ 45.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-04 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiogenesisBiological ProcessCell Surface ReceptorsCell physiologyCellsCollaborationsDiagnosticDiseaseEndocytosisEndosomesEnzymesFoundationsFunctional disorderGeneticGenetic DiseasesGenetic ScreeningHIV-1HumanIn VitroInfectionLinkLumen of the LysosomeLysosomesMediatingMembraneMicroscopyMissionMolecularMutationNational Institute of General Medical SciencesPathway interactionsPhysiologicalPreventionProcessProductivityProtein AnalysisProteinsProteomicsPublic HealthRegulationResearchResolutionSaccharomyces cerevisiaeSaccharomycetalesSiteSortingSystemTechniquesUbiquitinVesicleVisionWorkYeastsbiophysical analysisdisease diagnosisextracellularmanmodel organismnovelpathogenpathogenic virusproteostasisreceptorreconstitutiontooltraffickingvesicle transport
项目摘要
PROJECT SUMMARY
Lysosomes are the primary catabolic site of cells, serving to degrade extracellular material internalized by en-
docytosis and intracellular components earmarked for turnover. These items and the hydrolytic enzymes that
degrade them are delivered to lysosomes by multiple membrane trafficking pathways, which are operated by
cellular protein machineries that are evolutionarily conserved from yeast to man. Mutations that disrupt the ac-
tivities of these machineries are linked to genetic diseases, and pathogens exploit these trafficking pathways to
establish infection. Many of the molecular mechanisms that operate membrane trafficking machineries are un-
known. My lab addresses fundamental questions about membrane trafficking to lysosomes using the budding
yeast Saccharomyces cerevisiae as a genetically tractable model organism. The major questions we plan to
address over the next five years include the following. 1) What are the physiological mechanisms that regulate
the trafficking of cell-surface receptors to the hydrolytic interior of the lysosome? This trafficking pathway func-
tions at endosomes to sort endocytosed receptors into membrane-enclosed transport vesicles that are deliv-
ered into the lysosome lumen. Recent progress from my lab has revealed that the formation of these vesicles
is coordinated with other processes that are vital to cellular physiology, including ubiquitin protein homeostasis
and endocytic pH regulation. We plan to identify the machineries that interface these different cellular systems
and determine how they exert control over the protein machinery that mediates the formation of vesicles trans-
ported to the lysosome lumen. These results will define ways in which receptor degradation is coordinated with
cellular physiology. 2) What are the mechanisms that mediate the delivery of newly synthesized transmem-
brane proteins that are destined to function at the lysosomal membrane? Using novel genetic tools we created
for discovery and diagnostics, we recently identified two specific cellular machineries and several additional
candidate machineries that function in this trafficking pathway. We plan to define the mechanisms by which
these machineries function in transport, which will establish fundamental principles that underly the biogenesis
of lysosomes. Our work is bolstered by ongoing productive collaborations that employ diverse interdisciplinary
techniques, including high-resolution microscopy, biophysical analyses of protein assemblies reconstituted in
vitro, proteomics, and genetic screening. Moving forward, our overall vision is to continue exploiting yeast for
discovering and mechanistically understanding membrane trafficking to lysosomes while also addressing the
extent to which these mechanisms are conserved in human cells. The information gained from this work will
provide an understanding of how membrane trafficking pathways to lysosomes operate under normal physio-
logical conditions and how they are vulnerable in disease states.
项目摘要
溶酶体是细胞的主要分解代谢部位,可降解由en-
致力于营业额的密码和细胞内组件。这些物品和水解酶
降解它们是由多个膜运输途径传递到溶酶体的,这些途径由
从酵母到人的进化保守的细胞蛋白质机制。破坏AC-的突变
这些机械的琐事与遗传疾病有关,病原体利用这些贩运途径
建立感染。许多操作膜运输机制的分子机制都是
已知。我的实验室解决了使用萌芽
酿酒酵母作为一种遗传处理模型生物。我们计划的主要问题
未来五年的地址包括以下内容。 1)调节的生理机制是什么
将细胞表面受体运输到溶酶体的水解内部?这个贩运途径功能 -
内体的tions将内吞受体分类为膜封闭的转运囊泡,这些囊泡
进入溶酶体腔。我实验室的最新进展表明,这些囊泡的形成
与其他对细胞生理至关重要的过程协调,包括泛素蛋白稳态
和内吞pH调节。我们计划识别连接这些不同蜂窝系统的机器
并确定它们如何对蛋白质机制施加介导囊泡形成的蛋白质机制的控制
移植到溶酶体腔。这些结果将定义受体降解与与
细胞生理。 2)介导新合成的传输的传递的机制是什么
注定要在溶酶体膜上起作用的brane蛋白?使用我们创建的新型遗传工具
对于发现和诊断,我们最近确定了两个特定的蜂窝机械和其他几个
在此贩运途径中起作用的候选机器。我们计划定义该机制
这些机器在运输中起作用,该运输将建立基本原理
溶酶体。我们的工作得到了持续的生产合作的支持,这些合作采用多样化的跨学科
技术,包括高分辨率显微镜,对蛋白质组件的生物物理分析。
体外,蛋白质组学和基因筛查。向前迈进,我们的整体愿景是继续利用酵母
发现并机械理解膜运输到溶酶体,同时也解决了
这些机制在人类细胞中保守的程度。从这项工作中获得的信息将
提供了解溶酶体在正常物理学下运作的膜运输途径的理解
逻辑条件及其在疾病状态中的脆弱性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES G ODORIZZI其他文献
CHARLES G ODORIZZI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES G ODORIZZI', 18)}}的其他基金
Regulation of ESCRT-III activity in yeast
酵母中 ESCRT-III 活性的调节
- 批准号:
10386800 - 财政年份:2014
- 资助金额:
$ 45.4万 - 项目类别:
Mechanistic basis for endosomal dysfunction in frontotemporal dementia linked to
额颞叶痴呆内体功能障碍的机制基础
- 批准号:
8320089 - 财政年份:2011
- 资助金额:
$ 45.4万 - 项目类别:
Mechanistic basis for endosomal dysfunction in frontotemporal dementia linked to
额颞叶痴呆内体功能障碍的机制基础
- 批准号:
8223928 - 财政年份:2011
- 资助金额:
$ 45.4万 - 项目类别:
3-D FINE STRUCTURE OF MULTIVESICULAR BODIES IN SACCHAROMYCES CEREVISIAE
酿酒酵母多胞体的 3-D 精细结构
- 批准号:
8362525 - 财政年份:2011
- 资助金额:
$ 45.4万 - 项目类别:
3-D FINE STRUCTURE OF MULTIVESICULAR BODIES IN SACCHAROMYCES CEREVISIAE
酿酒酵母多胞体的 3-D 精细结构
- 批准号:
8170819 - 财政年份:2010
- 资助金额:
$ 45.4万 - 项目类别:
Molecular Analysis of Multivesicular Body Formation
多泡体形成的分子分析
- 批准号:
7924952 - 财政年份:2009
- 资助金额:
$ 45.4万 - 项目类别:
3-D FINE STRUCTURE OF MULTIVESICULAR BODIES IN SACCHAROMYCES CEREVISIAE
酿酒酵母多胞体的 3-D 精细结构
- 批准号:
7955033 - 财政年份:2009
- 资助金额:
$ 45.4万 - 项目类别:
相似国自然基金
Rhodopsin跨纤毛运输与微丝组装复合体在光感受器膜盘生物发生过程的功能关系分析
- 批准号:32371015
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
WTAP上调嘧啶转运体SLC25A36介导的线粒体生物发生在结直肠癌细胞增殖过程中的功能和机制研究
- 批准号:82303219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
VPS33A在肾小球旁细胞肾素颗粒生物发生过程中的作用和机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
VPS33A在肾小球旁细胞肾素颗粒生物发生过程中的作用和机制
- 批准号:32271157
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
NDRG2调控CLOCK介导的细胞生物节律在结直肠癌发生发展过程中的功能及机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Decoding the fundamental principles of autonomous clocks: mechanism, design and function
解读自主时钟的基本原理:机制、设计和功能
- 批准号:
10685116 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
- 批准号:
10679873 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
The role of the protocadherin gene cluster in neurodevelopment and the implications for neurodevelopmental disorders
原钙粘蛋白基因簇在神经发育中的作用及其对神经发育障碍的影响
- 批准号:
10808516 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Early Life Determinants of Child Health: A New Denver-Based Cohort
儿童健康的早期决定因素:丹佛的一个新队列
- 批准号:
10745631 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Specificity of RPSA-dependent translational control in mouse and human fetal spleen cells
小鼠和人胎儿脾细胞中 RPSA 依赖性翻译控制的特异性
- 批准号:
10647605 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别: