Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
基本信息
- 批准号:10271304
- 负责人:
- 金额:$ 45.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationActomyosinAddressAffectAnteriorArchitectureBiochemicalBiological ModelsBiomechanicsBiophysical ProcessBiophysicsCell ShapeCell modelCellsCellular biologyComplementComplexCongenital AbnormalityDefectDevelopmental BiologyDevelopmental ProcessDorsalEmbryoEmbryonic DevelopmentEnvironmentEpithelialExtracellular MatrixFormulationFoundationsFour-dimensionalGoalsHealthImageImage AnalysisIndividualKnowledgeLasersLeadLeftMathematicsMeasurementMechanicsMethodsMissionModelingMorphogenesisMotionMovementOpticsOrganOrgan ModelOrganogenesisOutputPatternPhenotypePhysicsPlayPreventionPublic HealthResearchResolutionRodRoleShapesSignal TransductionSignaling MoleculeStructural Congenital AnomaliesStructureSurfaceTestingThree-dimensional analysisTimeTissuesUnited States National Institutes of HealthVelocimetriesVesicleWorkZebrafishbasecell motilityconvergent extensiondisabilityin vivo imagingmalformationmathematical modelmechanical forcemechanical propertiesmorphogensmultidisciplinarynotochordnovelparticlepredictive modelingpreventprogramssimulationthree dimensional structure
项目摘要
PROJECT SUMMARY/ABSTRACT
Defects in programmed cell shape changes during embryonic development can disrupt organ morphogenesis
and cause structural birth defects. There are fundamental gaps in our understanding of how cells change their
shape during organ formation. While the biochemical signals and morphogen gradients that help govern
organogenesis are well-studied, evidence is growing that robust control of organ form and function often also
depends on multiple mechanical mechanisms that remain poorly understood. Thus, there is a critical need to
tease apart how multiple mechanisms – including tissue-scale dynamic forces and cell-autonomous
contractile forces – work together to generate “mechanical gradients” that program cell and organ
shape during organ formation. A challenge is that mechanical perturbations that affect the entire embryo
often result in the same global phenotype, making it difficult to pinpoint the role of each mechanism. Our long-
term goal is to develop a combined cell biology and modeling toolkit that allows us to predict cell-scale
phenotypes and appropriate perturbations that can be used to distinguish between multiple mechanical
mechanisms. This project uses Kupffer’s vesicle (KV), a transient epithelial organ that establishes left-right
asymmetry in the zebrafish embryo, as a model system. No upstream biochemical signaling gradients have
been identified that regulate KV cell shapes as required for left-right patterning, but multiple mechanical
mechanisms have been implicated. Preliminary results – from (4D = 3D + time) experimental perturbations and
measurements of single KV cell shapes, and novel mathematical models that simulate interacting 3D tissue
structures while retaining cell-scale resolution – lead us to formulate our central hypothesis that cell shape
changes critical for KV organogenesis result from mechanical gradients generated by interactions between the
KV and surrounding tissue structures as well as cell-autonomous contractile forces from inside KV. The goal of
Aim 1 is to determine how interactions between KV and notochord impact cell shape changes. 4D modeling
predictions for cell shapes and cell movement combined with live in vivo imaging and localized laser ablations
will determine how asymmetric forces generated by the rod-like notochord impact KV cell shape changes
during organogenesis. The goal of Aim 2 is to understand mechanisms by which actomyosin contractility in
surrounding tailbud cells and inside KV generate KV cell shape changes. Novel mathematical models will
predict how localized optical perturbations to tailbud mechanics, as well as perturbations to volume and cell-
autonomous contractility in cells inside the KV, affect KV organ shape. Key outputs include a modeling toolkit
for high-throughput simulations of dynamic interactions between complex 3D tissue structures complemented
by a cell biology toolkit that tests model predictions with spatially and temporally modulated activation of
biomechanical and biochemical signaling molecules. These results will pinpoint mechanical mechanisms that
regulate organogenesis, and may ultimately aid in the prediction or prevention of birth defects.
项目摘要/摘要
胚胎发育过程中编程的细胞形状变化的缺陷会破坏器官形态发生
并导致结构性出生缺陷。
在器官形成期间的形状。
器官发生是充分研究的,有证据表明对器官形式和功能的强大控制通常是
取决于多种机械机制,这些机制仍然很差。
挑逗如何使用多种机制 - 包括组织尺度的动态力和细胞自治
收缩力 - 共同努力以产生程序单元和器官的“机械梯度”
在器官形成期间的形状是影响整个胚胎的机械扰动
通常会导致相同的全局表型,使其差异可以确定每个机制的作用。
术语目标是开发一个组合的细胞生物学和建模工具包,使我们能够预测细胞尺度
表型和适当的扰动,可以在多个多重机械之间存在
机制。该项目使用kupffer的囊泡(KV),这是一种瞬态上皮器官
斑马鱼胚胎中的不对称性作为模型系统。
被左右图案所需的调节KV细胞形状的质量化,但多个机械
机制已涉及初步结果 - (4D = 3D +时间)实验性
单个KV细胞形状的测量以及模拟相互作用3D组织的新型数学模型
结构同时保留细胞尺度的分辨率领导我们制定我们的中心假设,即细胞形状
对KV器官发生至关重要的变化是由于机械梯度在
KV和周围的组织结构以及内部KV的细胞自主收缩
AIM 1是确定KV和Notochord冲击细胞形状之间的相互作用
细胞形状和细胞运动的预测与活体内成像和局部激光消融结合
将确定杆状柱影响KV细胞形状的变化如何变化
在器官发生期间。
周围的尾bud细胞和KV内部会产生KV细胞形状的变化。
预测如何将光学扰动与尾串机械进行扰动,以及与体积和细胞的局面
KV内部细胞中的自主收缩性会影响KV器官形状。
用于对复杂的3D组织结构之间动态相互作用的高齿模拟。
通过细胞生物学工具包测试测试模型的预测,以空间和时间模块化
生物力学和生化信号分子。
调节器官发生,并最终可能有助于预测或投影出生缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY D AMACK其他文献
JEFFREY D AMACK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY D AMACK', 18)}}的其他基金
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10121167 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10472046 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7851355 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7634059 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
8429442 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
8150627 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6992672 - 财政年份:2004
- 资助金额:
$ 45.35万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6850700 - 财政年份:2004
- 资助金额:
$ 45.35万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6738235 - 财政年份:2004
- 资助金额:
$ 45.35万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“ROS响应开关”靶向脂质体减少心脏射频消融术后电传导恢复的研究
- 批准号:82370318
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Molecular Basis of Nasal Pit Morphogenesis and its Role in Upper Lip Formation
鼻凹形态发生的分子基础及其在上唇形成中的作用
- 批准号:
10824138 - 财政年份:2023
- 资助金额:
$ 45.35万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10121167 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10472046 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Epidermal polarization: the desmosomal cadherin desmoglein 1 regulates tissue mechanics and barrier function
表皮极化:桥粒钙粘蛋白桥粒糖蛋白 1 调节组织力学和屏障功能
- 批准号:
9904494 - 财政年份:2019
- 资助金额:
$ 45.35万 - 项目类别:
Synthetic hydrogels to study formation and maintenance of intestinal crypts
用于研究肠隐窝的形成和维持的合成水凝胶
- 批准号:
10418728 - 财政年份:2019
- 资助金额:
$ 45.35万 - 项目类别: