Project 3
项目3
基本信息
- 批准号:10270395
- 负责人:
- 金额:$ 54.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimal ModelBase PairingBinding SitesBrain NeoplasmsCAR T cell therapyCD19 geneCRISPR/Cas technologyCancer PatientCancer PrognosisCell TherapyCell physiologyCellsCollaborationsComplementary DNAComplexCoupledDNADNA Double Strand BreakDNA Sequence AlterationDataEngineeringFamilyFlow CytometryGene DeliveryGene TargetingGenesGenetically Engineered MouseGenome engineeringHumanHuman EngineeringImmunocompetentImmunotherapyKnock-inKnock-outLaboratoriesLeadMalignant NeoplasmsMechanicsMemoryMethodsModalityModelingMusNR4A1 geneNR4A2 geneOutcomePatientsPhenotypePre-Clinical ModelPreclinical TestingProcessPrognosisPublishingRecombinant adeno-associated virus (rAAV)ResolutionRiskSafetySiteSolid NeoplasmSurvival RateSystemT-Cell ReceptorT-LymphocyteTechniquesTechnologyTestingTherapeutic UsesThree-Dimensional ImagingWorkactivating transcription factorantigen testbasecancer cellcancer immunotherapycell motilitychimeric antigen receptorchimeric antigen receptor T cellsclinical translationcostdigitaleffective therapyengineered T cellsex vivo imaginggenetically modified cellsgenome editinggenotoxicityhomologous recombinationimmunoengineeringimprovedin vitro testingin vivoinnovationinterestintravital imagingknockout geneleukemialeukemia treatmentlive cell imagingmathematical modelmesothelinmouse modelnew technologynovelnucleaseoverexpressionpancreatic cancer modelpancreatic neoplasmpre-clinicalpre-clinical assessmentprogrammed cell death protein 1programspromoterrepairedsuccesssynergismtargeted nucleasestranscription factortumortumor microenvironmenttumor-immune system interactions
项目摘要
ABSTRACT: PROJECT 3
Over the last several decades, it has become possible to isolate a patient’s own cells, engineer and expand them
in the laboratory, and use them to treat an existing cancer. This technology has largely advanced to using primary
human T cells genetically modified to express a tumor specific T cell receptor (TCR) or chimeric antigen receptor
(CAR). This approach has demonstrated durable cures in some leukemias, but has had limited success in the
treatment of solid tumors. This lack of efficacy is believed to be due to challenges faced by T cells in migrating
into and within complex solid tumor microenvironments and multiple immunosuppressive modalities found there.
As many of these challenges have been identified and mechanistically studied, we hypothesize that we can
engineer CAR T cells capable of overcoming all challenges found in the solid tumor microenvironment, leading
to durable cures for cancer patients with the worst prognosis. Recently, a number of groups have published high
efficiency methods for engineering T cells using CRISPR/Cas9. Moreover, the use of recombinant adeno
associated virus (rAAV) as a DNA donor molecule for homologous recombination (HR) combined with Cas9 has
also demonstrated incredible rates of site-specific gene delivery in T cells. Although these approaches are highly
effective, there are still drawbacks and issues to be resolved to improve capabilities and safety of gene editing
cells for therapy. For instance, nuclease-based gene editing still relies on stochastic repair of genotoxic double
strand breaks (DSBs) with little uniformity in the editing outcome. Fortunately, new technologies have emerged
to gene edit DNA at single base pair resolution with high product purity and efficiency and without a targeted
DSB, termed Cas9 base editors (BEs) and primer editors (PEs). We have demonstrated that this technology
allows for highly efficient multiplex genome editing via programmable enzymatic single base changes without
creating toxic DSBs, i.e. “digital editing”. As this technology is relatively new, there is also opportunity to develop
new and innovative genome editing strategies to develop fully digitally edited cells intended for therapeutic use
in a cost effect, rapid, and accurate manner. Thus, our specific aims are as follows: 1) Further develop multiplex
digital editing in murine and human T cells and explore novel uses for digital editing, 2) Deploy multiplex digital
editing to install novel edits in order to enhance T cells migration into and within mechanically complex tumor
microenvironment and also hardwire T cells to maintain a T resident memory phenotype, 3) Implement digital
editing to develop “off-the-shelf” T cells with enhanced solid tumor efficacy via digital knockout of all 3 NUR4A
transcription factor family. In summary, by deploying digital editing, we will make gene editing of cells intended
for therapeutic use more sophisticated, safe and lead to effective therapies against solid tumor tumors with
mechanically complex and immunosuppressive tumor microenvironments.
摘要:项目 3
在过去的几十年里,分离患者自身的细胞、对其进行改造和扩增已经成为可能
在实验室中,并用它们来治疗现有的癌症,这项技术已在很大程度上发展到使用原发性癌症。
人类 T 细胞经过基因改造以表达肿瘤特异性 T 细胞受体 (TCR) 或嵌合抗原受体
(CAR)。这种方法已证明可以持久治愈某些白血病,但在治疗白血病方面却取得了有限的成功。
实体瘤治疗缺乏疗效被认为是由于 T 细胞在迁移过程中面临的挑战。
进入复杂的实体瘤微环境和其中发现的多种免疫抑制方式。
由于许多这些挑战已经被识别和机械研究,我们追求的是,我们可以
工程 CAR T 细胞能够克服实体瘤微环境中发现的所有挑战,领先
最近,许多研究小组发表了关于如何为预后最差的癌症患者提供持久治疗的研究成果。
此外,使用 CRISPR/Cas9 改造 T 细胞的有效方法。
相关病毒(rAAV)作为DNA供体分子与Cas9结合进行同源重组(HR)
尽管这些方法的效率很高,但 T 细胞中的位点特异性基因传递率也令人难以置信。
有效,但仍存在缺陷和问题有待解决,以提高基因编辑的能力和安全性
例如,基于核酸酶的基因编辑仍然依赖于基因毒性双重的随机修复。
幸运的是,新技术已经出现。
以单碱基对分辨率对 DNA 进行基因编辑,产品纯度高、效率高,且无需靶向
DSB,称为 Cas9 碱基编辑器 (BE) 和引物编辑器 (PE),我们已经证明了该技术。
允许通过可编程酶促单碱基变化进行高效的多重基因组编辑,而无需
创建有毒 DSB,即“数字编辑”,由于这项技术相对较新,因此也有发展的机会。
新的和创新的基因组编辑策略,用于开发用于治疗用途的完全数字编辑的细胞
因此,我们的具体目标是: 1)进一步发展多路复用。
在小鼠和人类 T 细胞中进行数字编辑,并探索数字编辑的新用途,2) 部署多重数字化
编辑以安装新颖的编辑,以增强 T 细胞迁移到机械复杂的肿瘤中和内部
微环境和硬连线 T 细胞以维持 T 驻留记忆表型,3) 实施数字化
通过数字敲除所有 3 个 NUR4A 进行编辑,开发具有增强实体瘤疗效的“现成”T 细胞
总之,通过部署数字编辑,我们将实现对细胞的基因编辑。
用于治疗用途更加复杂、安全,并导致针对实体瘤的有效疗法
机械复杂和免疫抑制的肿瘤微环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Branden S Moriarity其他文献
Branden S Moriarity的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Branden S Moriarity', 18)}}的其他基金
Engineered B Cells as a Universal Platform for the Treatment of Enzymopathies
工程 B 细胞作为治疗酶病的通用平台
- 批准号:
10582595 - 财政年份:2020
- 资助金额:
$ 54.86万 - 项目类别:
Engineered B Cells as a Universal Platform for the Treatment of Enzymopathies
工程 B 细胞作为治疗酶病的通用平台
- 批准号:
10358566 - 财政年份:2020
- 资助金额:
$ 54.86万 - 项目类别:
Optimizing Gene Editing in Primary Human B Cells for Therapy and Research
优化人类原代 B 细胞中的基因编辑以用于治疗和研究
- 批准号:
9224508 - 财政年份:2017
- 资助金额:
$ 54.86万 - 项目类别:
Multiplex 'Conditional' Mice for Rapid and Affordable Pre-clinical Testing
多重“条件”小鼠用于快速且经济实惠的临床前测试
- 批准号:
9195708 - 财政年份:2015
- 资助金额:
$ 54.86万 - 项目类别:
Project 4 Treatment of Advanced Ovarian Cancer Using Gene-Edited NK CAR Cells
项目4 使用基因编辑的NK CAR细胞治疗晚期卵巢癌
- 批准号:
10452722 - 财政年份:2009
- 资助金额:
$ 54.86万 - 项目类别:
Project 4 Treatment of Advanced Ovarian Cancer Using Gene-Edited NK CAR Cells
项目4 使用基因编辑的NK CAR细胞治疗晚期卵巢癌
- 批准号:
10705051 - 财政年份:2009
- 资助金额:
$ 54.86万 - 项目类别:
Project 4 Treatment of Advanced Ovarian Cancer Using Gene-Edited NK CAR Cells
项目4 使用基因编辑的NK CAR细胞治疗晚期卵巢癌
- 批准号:
10268766 - 财政年份:2009
- 资助金额:
$ 54.86万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别: