High-throughput assays and small-molecule discovery of antiviral candidates targeting influenza hemagglutinin
针对流感血凝素的抗病毒候选药物的高通量测定和小分子发现
基本信息
- 批准号:10612773
- 负责人:
- 金额:$ 67.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffinityAnimal ModelAnimalsAntibodiesAntiviral AgentsAppearanceBindingBinding SitesBiochemicalBiological AssayBiophysicsBiotechnologyBirdsCellsCollectionCommunitiesComplementarity Determining RegionsComplexCyclic PeptidesDevelopmentDiseaseDrug TargetingEconomic BurdenEpidemicExhibitsFluorescence PolarizationFluorescence Resonance Energy TransferFoundationsFutureGoalsHalf-LifeHeadHealthHemagglutininHousingHumanHydrogen BondingHydrophobicityInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H2N2 SubtypeInfluenza A Virus, H3N2 SubtypeInfluenza A Virus, H5N1 SubtypeInfluenza A Virus, H7N7 SubtypeInfluenza A Virus, H7N9 SubtypeInfluenza A Virus, H9N2 SubtypeInfluenza A virusInfluenza B VirusInfluenza HemagglutininJournalsLabelLaboratoriesLeadLibrariesMembraneMembrane GlycoproteinsMissionMutationNatureNeuraminidasePeptidesPharmaceutical ChemistryPharmaceutical PreparationsPoint MutationPredispositionPropertyProteinsPublishingRecurrenceReporterResistanceRoentgen RaysScienceSeasonsSerotypingSignal TransductionSiteSpecificityStructureSurfaceSurface AntigensUnited States National Institutes of HealthViralViral PhysiologyVirusX-Ray CrystallographyZoonosesactive methodanti-influenzacombatcombinatorialcost effectivedesigndrug discoveryfeature detectionfitnessflufluorophorehigh throughput screeningimprovedinfluenza infectioninfluenzavirusinhibitorinnovationinterestiterative designmutantnanomolarneutralizing antibodynew pandemicnovelnovel therapeuticspandemic diseasepandemic influenzapandemic potentialpathogenic viruspreventrational designreceptor bindingscaffoldseasonal influenzasmall moleculesmall molecule librariesstemstoichiometrytherapeutic candidatetool
项目摘要
PROJECT SUMMARY / ABSTRACT
Influenza A viruses exhibit extreme diversity as exemplified by the multiple serotypes of the hemagglutinin
(HA, H1-H18) and neuraminidase (NA, N1-N11) surface antigens. To date, only 3 of 198 possible combinations
of HA and NA in avian and other animal reservoirs have been associated with human pandemics (H1N1, H2N2,
H3N2). Recent appearances of H5N1, H6N1, H7N7, H7N9, H9N2, and H10N8 in humans are constant reminders
of the potential for devastating new pandemics. Influenza B viruses with its two lineages further increase the
health and economic burdens of seasonal influenza. No effective antiviral drugs are currently available for
preventing entry of influenza A or B viruses into host cells (scientific premise). However, relatively recent
discoveries of broadly neutralizing antibodies to human influenza viruses and concomitant structural studies
have identified sites-of-vulnerability on the HA in pandemic, seasonal, and emerging influenza viruses. These
HA surface sites include the receptor binding site and membrane-proximal stem housing the fusion machinery,
both of which are essential for cellular infection. Common features for recognition of these sites can now be
exploited in design of small molecules to ultimately develop broadly applicable influenza antivirals.
Here, we will employ this structural information into the optimization and execution of high-throughput assays
to identify new small-molecule scaffolds that target the highly conserved and vulnerable stem-binding site. High-
throughput screening will be performed in parallel on representative HAs from influenza A group 1 against 600K
structurally diverse molecules (SA1). We will also subject group 2 and influenza B HAs to a 300K compound
screen (SA2). Validated hit compounds will be prioritized based on affinity and breadth across HAs and top
candidates will be rigorously optimized into lead molecules by x-ray structure-based design cycled with medicinal
chemistry. Biophysical binding, cellular infectivity and resistance assays (e.g., combinatorial viral libraries of HA
mutants) will aid in iterative design, selection, and characterization of potential novel therapeutic candidates with
favorable drug-like properties. All of these methods are actively employed in the Wolan and Wilson laboratories.
As proof-of-concept for this approach, we identified a molecule with modest affinity to the stem of group 1 HAs
with an HT assay of our own design. Its co-crystal structure with HA provided critical information towards design
and synthesis of a focused compound library, which we used to produce a stereoselective molecule with
nanomolar affinity and antiviral activity. Our overall goal is to identify and improve molecules with broad potency
against the stem of groups 1 and 2 as well as flu B HAs. To our knowledge, we are the first to design an assay
against group 2 and flu B HAs amenable to HTS (innovation). We anticipate that several classes of stem-targeted
compound scaffolds will be identified with nanomolar affinity to HAs with cellular antiviral activity and suitable
PK-ADME properties. Future efforts will include animal models of influenza infections to further validate our
antivirals with the ultimate goal of combatting future influenza pandemics and seasonal epidemics.
项目概要/摘要
甲型流感病毒表现出极大的多样性,血凝素的多种血清型就是例证
(HA、H1-H18)和神经氨酸酶(NA、N1-N11)表面抗原。迄今为止,198 种可能的组合中只有 3 种
禽类和其他动物宿主中的 HA 和 NA 与人类流行病(H1N1、H2N2、
H3N2)。最近在人类中出现的 H5N1、H6N1、H7N7、H7N9、H9N2 和 H10N8 不断提醒人们
造成毁灭性新流行病的可能性。具有两个谱系的乙型流感病毒进一步增加了
季节性流感的健康和经济负担。目前尚无有效的抗病毒药物
防止甲型或乙型流感病毒进入宿主细胞(科学前提)。然而,相对最近的
人类流感病毒广泛中和抗体的发现及伴随的结构研究
已经确定了 HA 在大流行性、季节性和新出现的流感病毒中的脆弱点。这些
HA 表面位点包括受体结合位点和容纳融合机制的近膜茎,
两者对于细胞感染都是必需的。现在可以使用用于识别这些站点的通用特征
用于小分子设计,最终开发出广泛适用的流感抗病毒药物。
在这里,我们将利用这些结构信息来优化和执行高通量测定
识别针对高度保守且脆弱的茎结合位点的新小分子支架。高的-
将针对 600K 对甲型流感 1 组的代表性 HA 并行进行通量筛选
结构多样的分子(SA1)。我们还将对 2 组和乙型流感 HA 进行 300K 化合物的处理
屏幕(SA2)。已验证的命中化合物将根据 HA 和顶级之间的亲和力和广度进行优先排序
候选药物将通过基于 X 射线结构的设计与药物循环严格优化为先导分子
化学。生物物理结合、细胞感染性和耐药性测定(例如 HA 的组合病毒文库)
突变体)将有助于潜在新型治疗候选药物的迭代设计、选择和表征
良好的药物样特性。所有这些方法都在 Wolan 和 Wilson 实验室中得到积极应用。
作为该方法的概念验证,我们鉴定了一种对 1 组 HA 的茎具有适度亲和力的分子
使用我们自己设计的 HT 检测。其与 HA 的共晶结构为设计提供了关键信息
以及重点化合物库的合成,我们用它来生产立体选择性分子
纳摩尔亲和力和抗病毒活性。我们的总体目标是识别和改进具有广泛效力的分子
对抗 1 组和 2 组以及 B 型流感 HA 的茎。据我们所知,我们是第一个设计检测方法的人
针对 2 组和 B 型流感 HA,适合 HTS(创新)。我们预计几类针对干细胞的
复合支架将被鉴定为具有细胞抗病毒活性和合适的 HA 的纳摩尔亲和力
PK-ADME 特性。未来的努力将包括流感感染的动物模型,以进一步验证我们的研究
抗病毒药物的最终目标是对抗未来的流感大流行和季节性流行病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IAN A WILSON其他文献
IAN A WILSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IAN A WILSON', 18)}}的其他基金
High-throughput assays and small-molecule discovery of antiviral candidates targeting influenza hemagglutinin
针对流感血凝素的抗病毒候选药物的高通量测定和小分子发现
- 批准号:
10397532 - 财政年份:2021
- 资助金额:
$ 67.85万 - 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
- 批准号:
10336287 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
- 批准号:
10643721 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
Exploiting sites of vulnerability on influenza viruses
利用流感病毒的脆弱点
- 批准号:
9114253 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
- 批准号:
10427133 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
- 批准号:
10083182 - 财政年份:2015
- 资助金额:
$ 67.85万 - 项目类别:
Structural insights into pandemic and emerging influenza viruses
对大流行和新出现的流感病毒的结构见解
- 批准号:
8644586 - 财政年份:2013
- 资助金额:
$ 67.85万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
- 批准号:
10585764 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别: