Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
基本信息
- 批准号:10611896
- 负责人:
- 金额:$ 20.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-20 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVACE2AcuteAmino Acid MotifsAmino AcidsAntibodiesBacteriaBindingBiological AssayBiotechnologyCOVID-19Cell LineCell membraneCellsCessation of lifeChemicalsChemistryCholesterolCoculture TechniquesCoronavirusDevelopmentDiseaseDissociationEndocytosisEngineeringEpithelial CellsEpitheliumFamilyFat BodyFormulationFutureGenesHumanHybridsHydrophobicityIn VitroIncubatedInfectionInfectious AgentIntegral Membrane ProteinLecithinLengthLipidsMediatingMembraneMembrane LipidsMicellesMicrofluidic MicrochipsMicrofluidicsMolecularMolecular ConformationNanostructuresNaturePeptide HydrolasesPeptidesPhospholipidsPlantsProtein Binding DomainProteinsPulmonary Surfactant-Associated Protein ARecombinant ProteinsRecombinantsReporterRespiratory distressSARS coronavirusSARS-CoV-2 infectionSerine ProteaseSevere Acute Respiratory SyndromeStructureSurfaceSyndromeTMPRSS2 geneTertiary Protein StructureTestingTherapeuticVaccinesVariantVesicleViralVirionVirusVirus DiseasesWaterWorkWritingamphiphilicitybiosafety level 3 facilitydensitydesigndimerhydrophilicityinhibitorinnovationinterfacialmimeticsmonomernanobodiesnanoparticlenanovesiclenovelnovel coronaviruspandemic diseaseparticlepeptidomimeticsprecision medicinepreventprotein reconstitutionreceptorreceptor bindingreconstitutionrespiratoryself assemblysuccesssurfactantviral entry inhibitor
项目摘要
Summary
Severe
respiratory
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a world-wide
pandemic causing over 525K deaths in the U.S. and over 2.6M deaths world-wide as of this writing.
Here, we propose to make phospholipid vesicles and other related nanostructures (droplets and micelles) with
recombinant protein motifs that will bind and inactivate the SARS-CoV-2 virion – we call these structures
inactosomes. Our inactosomes will be novel hybrid materials into which functional recombinant proteins are
reconstituted. The functionalized protein will be variants of oleosin, a naturally occurring surfactant protein.
Previously, we have designed and produced novel oleosin variants that assemble into vesicle membranes and
micelles and can stabilize droplets due to their triblock-like free-chain amphiphilic structure. We can readily
incorporate functional peptide motifs into oleosin recombinantly.
SARS-CoV-2 can enter epithelial cells via endocytosis and/or fusion. Binding between the spike protein (S)
on SARS-CoV-2 and the ACE2 receptor is essential for the entry of the virus into the epithelium. The ACE2
receptor can mediate endocytosis. Alternatively, after binding to ACE2, a protease (TMPRSS2) can activate a
conformational change in the S protein leading to fusogenic entry. We envision a number of chemistries that will
be directly useful at interfering with infection by SARS-CoV-2. First, a family of spike protein binding motifs –
mini-proteins, single chain antibodies (sybodies), or ACE2 peptide mimetics - will be recombinantly added to the
hydrophilic ends of oleosin. These motifs have low dissociation constants with the spike protein receptor binding
domain and are much easier to produce than large antibodies. When these virus binding motif-oleosins are
reconstituted into nanostructures, the result will be a multivalent particle (inactosomes) that can bind directly to
SARS-CoV-2 and competitively blocks its entry. Next, we will incorporate an oleosin that presents a small
peptidic fusion inhibitor of the S protein to prevent fusogenic entry of the virus on cell lines expressing TMPRSS2.
Peptides that block either binding and fusion can be combined to make multi-functional inhibitory inactosomes.
In Aim 1, we will develop and characterize SARS-CoV-2 inactosomes that prevent endocytosis-
mediated entry into cells. In Aim 2, we will develop and characterize the SARS-CoV-2 inactosomes that
block fusogenic entry, followed by inactosomes which possess both ACE2 blocking peptides and anti-
fusogenic peptides. Combinations of SARS-CoV-2 reporter particles (bearing an eGFP gene) and SARS-CoV-2
inactosomes will be incubated in a co-culture to assess the binding and infection into 293T, Vero A6, and Calu-
3 cells. This assay will be used to optimize the chemical composition of inactosomes (type of virus binding motif,
nanoparticle structure, total protein density, ratio of virus binding motifs to fusion inhibitory motifs) to minimize
the entry of SARS-CoV-2. The optimized inactosome formulations will then be tested for inhibiting infection of
live SARS-CoV-2 virus into cells at the Penn Center for Precision Medicine.
概括
严重
呼吸道
急性呼吸综合征冠状病毒2(SARS-COV-2)是Covid-19的原因,这是世界范围内的
在撰写本文时,大流行在美国造成超过52.5万人死亡,全球死亡人数超过260万。
在这里,我们建议将磷脂蔬菜和其他相关纳米结构(液滴和胶束)与
重组蛋白基序将结合并灭活SARS-COV-2病毒体 - 我们称这些结构称为
无效。我们的无活性将是新型混合材料,功能重组蛋白是
重构。功能化的蛋白将是一种天然存在的表面活性剂蛋白的含油蛋白的变体。
以前,我们设计和生产了新型油胶质变体,这些变体组装成囊泡膜和
由于胶束像三嵌段一样的自由链两亲性结构,可以稳定液滴。我们很容易
将功能性肽基序掺入油蛋白蛋白重组中。
SARS-COV-2可以通过内吞和/或融合进入上皮细胞。峰值蛋白之间的结合
在SARS-COV-2和ACE2受体上,对病毒进入上皮是必不可少的。 ACE2
受体可以介导内吞作用。另外,在与ACE2结合后,蛋白酶(TMPRSS2)可以激活A
S蛋白的构象变化导致融合的进入。我们设想了许多化学成分
在干扰SARS-COV-2感染时直接有用。首先,一个尖峰蛋白结合基序 -
微型蛋白质,单链抗体(Sybodies)或ACE2 Pepper Mimetics - 将重组添加到
油脂的亲水末端。这些基序与峰值蛋白受体结合具有低解离常数
域,比大型抗体容易得多。当这些病毒结合基序蛋白是
结果重构为纳米结构,结果将是一个多价粒子(不活跃),可以直接结合到
SARS-COV-2并有竞争力阻止其进入。接下来,我们将掺入一个呈现小的油脂
S蛋白的肽融合抑制剂,以防止病毒在表达TMPRSS2的细胞系上的融合进入。
可以将阻断结合和融合的肽组合起来,以使多函数抑制性不活跃。
在AIM 1中,我们将开发并表征SARS-COV-2无效体,以防止内吞作用 -
介导的进入细胞。在AIM 2中,我们将开发并描述SARS-COV-2的不作用
阻塞融合的进入,其次是无活性体,既有ACE2封闭肽又有抗 -
fusogenic petides。 SARS-COV-2报告基因颗粒(带有EGFP基因)和SARS-COV-2的组合
无活性体将在共培养中孵育,以评估与293t,Vero A6和Calu-的结合和感染
3个细胞。该测定法将用于优化非活性体的化学组成(病毒结合基序的类型,
纳米颗粒结构,总蛋白质密度,病毒结合基序与融合抑制基序的比率),以最大程度地减少
SARS-COV-2的进入。然后,将测试优化的无效公式的抑制感染
活体SARS-COV-2病毒进入宾夕法尼亚州精密医学中心的细胞。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Hammer其他文献
Determinants that enable disordered protein assembly into discrete condensed phases.
使无序蛋白质组装成离散凝聚相的决定因素。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:21.8
- 作者:
Rachel M Welles;Kandarp A. Sojitra;Mikael V. Garabedian;Boao Xia;Wentao Wang;Muyang Guan;R. M. Regy;Elizabeth R. Gallagher;Daniel A Hammer;J. Mittal;Matthew C. Good - 通讯作者:
Matthew C. Good
Daniel A Hammer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Hammer', 18)}}的其他基金
Controlling the upstream migration of neutrophils by manipulating the function of Mac-1 and LFA-1
通过操纵Mac-1和LFA-1的功能来控制中性粒细胞的上游迁移
- 批准号:
10446740 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
- 批准号:
10370745 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Controlling the upstream migration of neutrophils by manipulating the function of Mac-1 and LFA-1
通过操纵Mac-1和LFA-1的功能来控制中性粒细胞的上游迁移
- 批准号:
10616779 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Controlling the Upstream Migration of Neutrophils through the Modulation of Mac-1
通过Mac-1的调节控制中性粒细胞的上游迁移
- 批准号:
9756062 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
- 批准号:
9288617 - 财政年份:2017
- 资助金额:
$ 20.31万 - 项目类别:
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
- 批准号:
9752590 - 财政年份:2017
- 资助金额:
$ 20.31万 - 项目类别:
Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
- 批准号:
8583289 - 财政年份:2013
- 资助金额:
$ 20.31万 - 项目类别:
Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
- 批准号:
9058548 - 财政年份:2013
- 资助金额:
$ 20.31万 - 项目类别:
Mechano-dynamics of the Transition to Firm Adhesion and MoIotility in Neutrophils
中性粒细胞向牢固粘附和运动性转变的机械动力学
- 批准号:
8006825 - 财政年份:2010
- 资助金额:
$ 20.31万 - 项目类别:
Integrated Multi-scale Adhesive Dynamics Modeling of T-lymphocyte Homing
T 淋巴细胞归巢的集成多尺度粘附动力学建模
- 批准号:
9230321 - 财政年份:2009
- 资助金额:
$ 20.31万 - 项目类别:
相似国自然基金
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
- 批准号:
10593622 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Mechanisms of Immune Dysfunction in Oral Post-Acute Sequelae of Covid-19
Covid-19口腔急性后遗症中免疫功能障碍的机制
- 批准号:
10892624 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
- 批准号:
10722852 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Investigating the role and therapeutic potential of the alpha5beta1 integrin in risk factors for COVID-19-associated cognitive impairment
研究 α5β1 整合素在 COVID-19 相关认知障碍危险因素中的作用和治疗潜力
- 批准号:
10658178 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Chitin and chitinases in SARS-CoV-2 infection
SARS-CoV-2 感染中的几丁质和几丁质酶
- 批准号:
10742004 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别: