Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
基本信息
- 批准号:8583289
- 负责人:
- 金额:$ 35.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:Actin-Binding ProteinActinsActomyosinAdaptor Signaling ProteinAdhesionsAdhesivesAffectAntigen PresentationArchitectureArgonArteriesB-LymphocytesBehaviorBindingBiochemicalBiocompatible MaterialsBiologicalBiological ModelsBiological ProductsBlood CellsBlood ProteinsBlood VesselsBlood capillariesBundlingCCL19 geneCCL21 geneCD80 geneCadherinsCalendarCaliberCancer VaccinesCardiac MyocytesCell AdhesionCell Adhesion MoleculesCell CommunicationCell Culture TechniquesCell PolarityCell ShapeCell physiologyCell-Cell AdhesionCellsCellular biologyCertificationChemicalsChemotaxisClinical TrialsCommunicationComplexCoupledCuesCytoskeletal ProteinsCytoskeletonDendritic CellsDepartment of EnergyDevelopmentDevice DesignsDevicesDirect CostsDiseaseDistalEducationElasticityEndocytosisEndothelial CellsEndotheliumEngineeringEnsureEnterovirus 71EvaluationExtracellular MatrixF-ActinFibronectinsFilopodiaFosteringFoundationsFundingGenerationsGoalsGrantHL60HealthHeartHepatocyteHomingHumanHuman ResourcesIACUCImageImmuneImmune responseImmune systemImmunotherapyIn VitroIndividualInfarctionInfiltrationInflammatoryInstitutional Review BoardsIntegrinsIntercellular adhesion molecule 1InvestigationKnockout MiceLabelLengthLeukocytesLigandsLightLiverLymphocyteMagnetismMalignant NeoplasmsMalignant neoplasm of ovaryMapsMarylandMeasurementMeasuresMechanical StressMechanicsMediatingMedicineMesenchymal Stem CellsMessenger RNAMethodologyMethodsMicrocapsules drug delivery systemMicrofilamentsMicrofluidicsMicroscopyModelingModificationMolecularMolecular BiologyMorphogenesisMotionMusMyosin Type IINanotechnologyNational Heart, Lung, and Blood InstituteNational Institute of Allergy and Infectious DiseaseNational Institute of Biomedical Imaging and BioengineeringNational Institute of General Medical SciencesNatural ImmunityNatureNeutrophil ActivationOrganP-selectin ligand proteinPathogenesisPathway interactionsPerformancePilot ProjectsPositioning AttributePreclinical Drug EvaluationProgress ReportsPropertyProteinsPublishingRecombinant ProteinsRecombinantsRecoveryRegenerative MedicineRegulationReportingResearchResearch PersonnelRoleScienceSignal TransductionSignaling MoleculeSignaling ProteinSimulateSmall Interfering RNASmooth Muscle MyocytesStem cellsStressStructureSystemT-Cell ActivationT-LymphocyteTechnologyTestingTimeTissue EngineeringTissuesTractionUnited States National Institutes of HealthUniversitiesVascular SystemVascularizationVentricular RemodelingVesicleVirusWagesWorkadaptive immunityangiogenesisbasecancer immunotherapycapillarycell motilitycell typechemokinechemokine receptorclinically relevantcomputer frameworkcostcytokinedesigndetectordirectional celldrug testingelastomericezrinfascingenetic regulatory proteinhuman subjectin vivoinsightknock-downmedical implantmethod developmentmigrationmutantnanoparticleneutrophilnext generationnovelparticleprogramsprotein expressionreceptorresponsescaffoldspatiotemporaltooltrafficking
项目摘要
Dendritic cells (DCs) are important regulators of the mammalian immune system and
motility is critical to their proper function. Technologies such as cancer immunotherapy
critically depend on DC migration. DCs possess multiple chemokine receptors and crawl
in response to chemokine gradients, which direct DC positioning throughout the immune
system. Ultimately, DCs must integrate multiple signals in order to move in a single
direction. The goal of this project is to use a novel biointerfacial tool, micropost array
detectors (mPADs), coupled with microfluidic gradient chambers, to apply a time-
invariant chemokine gradient to cells, and measure the traction forces exerted by DCs
during migration. Our recently published work shows that mPAD arrays are sufficiently
sensitive to measure the low traction stresses (0.5 nN per filopod and 20 nN per cell) of
migrating DCs. We now use these arrays to understand the components within cells that
give rise to directed cell motion and to understand how DCs integrate chemokine signals
and convert them to traction stresses and directional motion. The specific aims of the
proposal are: 1) to use novel micropost force detector to measure DC motility in well-
defined gradients of single chemokines on multiple adhesive ligands; 2) to measure the
effects of regulatory proteins HS1 and WASp on DC migration in single chemokine
gradients; and 3) to measure the forces of DC migration during turning when the
gradient rapidly changes direction. In all aims, post arrays will be calibrated to ensure
force maps are independent of post architecture, and we will correlate the direction of
motion to the spatio-temporal map of forces that DCs exert. Furthermore, by varying the
length of posts, we will determine the relationship between substrate elasticity and
directional motion. This project is aided by a wealth of molecular and cellular tools
including knock out mice in which chemokine receptors, actin regulatory proteins such
as WASp, HS1 and myosin II, and various molecular knockdowns and pharmacological
agents. The methods we establish here will yield a comprehensive picture of the forces
exerted during DC motility, and the methods established here will have a significant
impact on the elucidation of the mechanisms of motility of other fast moving amoeboid
cells of the immune system that generate low forces, including T-lymphocytes.
树突状细胞(DC)是哺乳动物免疫系统的重要调节剂,
运动对于其适当的功能至关重要。癌症免疫疗法等技术
严重取决于直流迁移。 DC具有多个趋化因子受体和爬网
响应趋化因子梯度,该趋化因子梯度将直流定位在整个免疫中
系统。最终,DC必须集成多个信号才能移动
方向。该项目的目的是使用一种新颖的生物界面工具Microstost Array
探测器(MPAD),再加上微流体梯度腔,以应用时间
不变的趋化因子梯度对细胞,并测量DC施加的牵引力
在迁移期间。我们最近发表的工作表明,MPAD阵列足够
敏感测量低牵引力的应力(每个纤维足动物0.5 nn和每个细胞20 nn)
迁移DC。现在,我们使用这些数组来了解单元格中的组件
引起定向细胞运动,并了解DC如何整合趋化因子信号
并将其转换为牵引力和方向运动。特定目标
提案是:1)使用新型的微型验证探测器来测量DC的良好性。
在多种粘合剂配体上定义的单个趋化因子的梯度; 2)测量
调节蛋白HS1和WASP对单个趋化因子中直流迁移的影响
梯度; 3)在转弯期间测量直流迁移的力
梯度迅速改变方向。总的来说,将校准后阵列以确保
力图独立于后建筑,我们将关联
向DCS发动的力的时空图映射运动。此外,通过改变
帖子长度,我们将确定底物弹性与
方向运动。该项目得到了大量分子和细胞工具的帮助
包括敲除趋化因子受体,肌动蛋白调节蛋白的小鼠
如WASP,HS1和肌球蛋白II,以及各种分子敲低和药理
代理商。我们在这里建立的方法将产生力量的全面图片
在直流运动期间施加的,此处建立的方法将具有重要的
对其他快速移动变形虫的运动机制阐明的影响
产生低力的免疫系统的细胞,包括T淋巴细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Hammer其他文献
Determinants that enable disordered protein assembly into discrete condensed phases.
使无序蛋白质组装成离散凝聚相的决定因素。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:21.8
- 作者:
Rachel M Welles;Kandarp A. Sojitra;Mikael V. Garabedian;Boao Xia;Wentao Wang;Muyang Guan;R. M. Regy;Elizabeth R. Gallagher;Daniel A Hammer;J. Mittal;Matthew C. Good - 通讯作者:
Matthew C. Good
Daniel A Hammer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Hammer', 18)}}的其他基金
Controlling the upstream migration of neutrophils by manipulating the function of Mac-1 and LFA-1
通过操纵Mac-1和LFA-1的功能来控制中性粒细胞的上游迁移
- 批准号:
10446740 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
- 批准号:
10370745 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Controlling the upstream migration of neutrophils by manipulating the function of Mac-1 and LFA-1
通过操纵Mac-1和LFA-1的功能来控制中性粒细胞的上游迁移
- 批准号:
10616779 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
- 批准号:
10611896 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Controlling the Upstream Migration of Neutrophils through the Modulation of Mac-1
通过Mac-1的调节控制中性粒细胞的上游迁移
- 批准号:
9756062 - 财政年份:2019
- 资助金额:
$ 35.24万 - 项目类别:
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
- 批准号:
9288617 - 财政年份:2017
- 资助金额:
$ 35.24万 - 项目类别:
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
- 批准号:
9752590 - 财政年份:2017
- 资助金额:
$ 35.24万 - 项目类别:
Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
- 批准号:
9058548 - 财政年份:2013
- 资助金额:
$ 35.24万 - 项目类别:
Mechano-dynamics of the Transition to Firm Adhesion and MoIotility in Neutrophils
中性粒细胞向牢固粘附和运动性转变的机械动力学
- 批准号:
8006825 - 财政年份:2010
- 资助金额:
$ 35.24万 - 项目类别:
Integrated Multi-scale Adhesive Dynamics Modeling of T-lymphocyte Homing
T 淋巴细胞归巢的集成多尺度粘附动力学建模
- 批准号:
9230321 - 财政年份:2009
- 资助金额:
$ 35.24万 - 项目类别:
相似海外基金
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
In utero rescue of cleft palate using maternal administration of folic acid
使用叶酸在子宫内挽救腭裂
- 批准号:
10646021 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
- 批准号:
10659239 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Host Ca2+, actin, and ATP production in rickettsia-endothelial cell dysfunction
立克次体内皮细胞功能障碍中宿主 Ca2、肌动蛋白和 ATP 的产生
- 批准号:
10659249 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
The mechanism of cell size regulation by polycystins
多囊蛋白调节细胞大小的机制
- 批准号:
10609393 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别: