Ex vivo analysis of human brain tumor cells in a microvascular niche model
微血管生态位模型中人脑肿瘤细胞的离体分析
基本信息
- 批准号:10599100
- 负责人:
- 金额:$ 51.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-04 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAnimalsBiocompatible MaterialsBiologicalBiological AssayBiologyBiomedical EngineeringBlood VesselsBone MarrowBrainBrain NeoplasmsCancer BiologyCancer CenterCell Culture TechniquesCellsCerebrovascular systemClassificationClinicClinical DataCoculture TechniquesCultured Tumor CellsDataDevelopmentDiseaseDisease ProgressionDistantDrug Delivery SystemsEnvironmentGelGenetic TranscriptionGlioblastomaGliomaHeterogeneityHumanIn VitroIndividualInfiltrationInvadedLaboratoriesLibrariesLinkMaintenanceMalignant NeoplasmsMalignant neoplasm of brainMeasuresMicrofluidicsModelingMolecularMolecular BiologyMotivationOncologyPathologicPathologyPatientsPerfusionPericytesPerivascular NeoplasmPharmaceutical PreparationsPhenotypePilot ProjectsPrimary Brain NeoplasmsPrimary NeoplasmPrognosisProliferatingPropertyProteomicsRelapseReproducibilityResistance developmentResolutionSamplingSpecimenStructureSystemTechnologyTestingTissue EngineeringTrainingTumor Cell MigrationTumor Stem CellsTumor SubtypeUniversitiesangiogenesiscell behaviorcell typechemotherapyclinical applicationcohortcostdrug testingexperiencegenetic signatureimprovedin vitro Modelin vivo Modelinterestleukemic stem cellmedical schoolsmicrosystemsmid-career facultymigrationmind controlmouse modelmultidisciplinaryneoplastic cellneuropathologyneurosurgerynovelpatient derived xenograft modelpatient prognosisprecision drugsprecision medicinepredict clinical outcomereal time monitoringresponseself-renewalsingle cell analysissingle-cell RNA sequencingsmall moleculestem cellsstem-like cellsuccesssynergismtargeted treatmenttechnology validationtherapy resistanttranscriptometranscriptome sequencingtranscriptomic profilingtreatment stratificationtumortumor heterogeneity
项目摘要
PROJECT SUMMARY
The region near the brain vasculature in human brain tumors, called the perivascular niche (PVN), is an
important microenvironment for the maintenance of brain tumor stem-like cells (BTSCs), the development of
resistance to chemo or targeted therapies, and the path for tumor infiltration to distant regions in the whole
brain, leading to incurable diseases. Current in vitro models such as 2D cell cultures or 3D tumor spheroids do
not contain this niche environment. Mouse models of brain tumors can recapitulate some aspects of the PVN,
but have challenges in terms of costly assays, low throughput, and lack of the ability for high-resolution live cell
tracking of BTSC dynamics. Herein, we propose to develop a tissue-engineered 3D microvascular niche-on-a-
chip model that can incorporate primary brain tumor cells from patients in order to bridge this gap between in
vitro and in vivo models. Our pilot study has demonstrated the success in co-culture of patient-derived
glioblastoma cells and microvasculature in a microfluidic gel system and observed preferential localization of
BTSCs in the PVN. Comparing ex vivo dynamics of individual tumor cells on-chip to single-cell transcriptomes
across 10 patients further revealed a correlation between perivascular localization and transcriptional subtypes.
In this project, we propose to further examine tumor cell migration and localization using a larger cohort of
patient specimens and compare the results to pathological and clinical data, aiming to develop it into an ex vivo
functional assay for patient prognosis and subclassification (Aim 1). We will apply scRNA-seq to the same
samples to generate correlative data to identify subtypes associated with distinct ex vivo dynamics in the
tissue-engineered PVN model, which can help elucidate the molecular mechanisms of PVN in tumor cell fate
and invasion (Aim 2). Finally, we will investigate the response of tumor cells in PVN to chemo and targeted
therapies administered through the perfusable microvascular network to assess the potential to perform
personalized drug test and therapeutic stratification (Aim 3). This project will lead to a novel tissue-engineered
microsystem to not only study the biology of PVN in human brain tumor development but also develop new
assays for ex vivo test of human tumor cells for precision medicine.
项目摘要
人脑肿瘤中脑脉管系统附近的区域称为周围的壁re(PVN),是一种
维持脑肿瘤样细胞(BTSC)的重要微环境,发展
对化学疗法或靶向疗法的抗性,以及肿瘤浸润到整个远处的路径
大脑,导致无法治愈的疾病。当前的体外模型,例如2D细胞培养或3D肿瘤球体DO
不包含这个利基环境。脑肿瘤的小鼠模型可以概括PVN的某些方面
但是在昂贵的测定,低通量和缺乏高分辨率活细胞的能力方面面临挑战
跟踪BTSC动力学。本文中,我们建议开发组织工程的3D微血管壁rike-a-a-
芯片模型可以结合患者的原发性脑肿瘤细胞,以弥合IN之间的差距
体外模型。我们的试点研究表明,在患者衍生的共同文化中取得了成功
微流体凝胶系统中的胶质母细胞瘤细胞和微脉管系统,并观察到优先定位
PVN中的BTSC。比较片上个体肿瘤细胞的离体动力学与单细胞转录组
在10名患者中,进一步显示血管周定位与转录亚型之间存在相关性。
在这个项目中,我们建议使用较大的队列进一步检查肿瘤细胞的迁移和定位
患者标本并将结果与病理和临床数据进行比较,旨在将其发展为离体
患者预后和亚分类的功能分析(AIM 1)。我们将把scrna-seq应用于同一
样品生成相关数据以识别与与不同的离体动力学相关的亚型
组织工程的PVN模型,可以帮助阐明肿瘤细胞命运中PVN的分子机制
和入侵(目标2)。最后,我们将研究PVN中肿瘤细胞对化学疗法的反应,并靶向
通过灌注微血管网络进行的疗法,以评估执行的潜力
个性化药物测试和治疗分层(AIM 3)。该项目将导致新型组织工程
微系统不仅要研究人类脑肿瘤发育中PVN的生物学,而且还发展了新的
对精确医学的人类肿瘤细胞的离体检测测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Fan其他文献
Rong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Fan', 18)}}的其他基金
Highly scalable and sensitive spatial transcriptomic and epigenomic sequencing of brain tissues from human and non-human primate
对人类和非人类灵长类动物的脑组织进行高度可扩展且灵敏的空间转录组和表观基因组测序
- 批准号:
10370074 - 财政年份:2021
- 资助金额:
$ 51.72万 - 项目类别:
Defining Epigenetic States of Senescent Cells and Associated Tissue Environments in the Human Lymphoid Tissues
定义人类淋巴组织中衰老细胞和相关组织环境的表观遗传状态
- 批准号:
10666979 - 财政年份:2021
- 资助金额:
$ 51.72万 - 项目类别:
Yale TMC for Cellular Senescence in Lymphoid Organs
耶鲁大学 TMC 研究淋巴器官细胞衰老
- 批准号:
10384399 - 财政年份:2021
- 资助金额:
$ 51.72万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 51.72万 - 项目类别: