Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
支持内隐和外显感觉运动学习的神经机制
基本信息
- 批准号:10598457
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBasal GangliaBasic ScienceBehaviorBehavior ControlBehavioralBrainCalibrationCerebellumClinicalClosure by clampCompetenceComplementComputer ModelsConceptionsCuesDelawareDissociationDoctor of PhilosophyEnvironmentEvaluationExhibitsFacultyFatigueFeedbackFoundationsFutureGoalsGrainHumanImpairmentIndividualInjuryInstitutionInterventionLearningLinkLiteratureMemoryMentorsMentorshipMethodsModelingMotorMovementMuscle FatigueNational Research Service AwardsNeurologistNeuropsychologyParkinson DiseaseParticipantPatientsPatternPhysiologicalPlayPositioning AttributePostdoctoral FellowProcessRehabilitation therapyReportingResearchRetrievalRewardsRodent ModelRoleSavingsSignal TransductionSolidSpinocerebellar AtaxiasStrategic PlanningStructureSupervisionSupport SystemSystemTestingTrainingWalkingWorkWritinganalytical toolbehavioral studybrain machine interfacecognitive neurosciencecognitive rehabilitationdesignexperimental studyflexibilityimprovedinsightmotor controlmotor learningnervous system disorderneuralneuroimagingneuromechanismnonhuman primatenovelnovel strategiesoperationpedagogyphysical therapistpower analysisprofessorrecruitreward processingsensorimotor systemskillssuccessverbal
项目摘要
TITLE of PROJECT
Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
PROJECT SUMMARY
Successful goal-directed actions require a flexible motor control system, one that can quickly respond to changes
in the body (e.g., muscle fatigue) and in the environment (e.g., a windy day). Such flexibility depends on the
operation of multiple learning processes. Implicit learning processes (i.e., implicit adaptation) keep the
sensorimotor system exquisitely calibrated in an automatic manner, whereas explicit learning processes can
facilitate rapid adjustments in a strategic, yet effortful manner. While the cerebellum and basal ganglia are
prominently featured in the motor learning literature, their contribution to sensorimotor adaptation remains
unclear, in part because past studies have employed tasks that conflate implicit and explicit learning processes.
To disentangle the specific contributions of the cerebellum and basal ganglia to sensorimotor adaptation, I will
use a set of behavioral tasks developed in my mentor’s lab that are designed to isolate the contribution of different
learning processes. The results from this work have revised our current computational understanding of
sensorimotor adaptation and have set the stage for taking a new look at the subcortical systems involved in this
form of learning. In the proposed studies, we will test patients with spinocerebellar ataxia (SCA) and Parkinson’s
disease (PD) on these tasks. In terms of basic research, the results will be important in advancing our
understanding of how distributed neural systems support motor learning. In terms of translational benefit, the
insights from this work will aid physical therapists to better tailor interventions that tap into intact learning
mechanisms or enhance impaired ones.
This NRSA F31 training plan encompasses two specific aims (three experiments) that will be conducted at UC
Berkeley under the supervision of my sponsor, Prof. Richard Ivry. As a PI for 30 years, Prof. Ivry has trained 24
Ph.D. trainees and 21 post-doc fellows, many of whom hold faculty positions at research institutions. Under the
supervision of Prof. Ivry, this proposal outlines a comprehensive training plan, centered on gaining fluency in
computational modeling of behavior, methods in neuropsychology, writing and grantsmanship, presenting and
disseminating research, and clinical pedagogy and mentorship. I will benefit from frequent interactions with Prof.
Hyosub Kim, a former post-doc with Prof. Ivry who is now an Assistant Professor at the Univ. of Delaware. Prof.
Kim provides added expertise in computational modeling and mentorship as a trained physical therapist. I will
also benefit from mentorship provided by Prof. Robert Knight, a Professor and neurologist at UC Berkeley, who
can provide additional training in patient evaluation and general training drawing from many years of stellar
neuropsychological research with many patient groups and trainees. In summary, this training plan will build a
solid foundation for my future role as a PI, working at the intersection of cognitive neuroscience and rehabilitation.
项目名称
支持内隐和外显感觉运动学习的神经机制
项目概要
成功的目标导向行动需要灵活的电机控制系统,能够快速响应变化
这种灵活性取决于身体(例如肌肉疲劳)和环境(例如大风天)。
多个学习过程的运行(即隐式适应)
感觉运动系统以自动方式精确校准,而显式学习过程可以
小脑和基底神经节以战略性但努力的方式促进快速调整。
它们在运动学习文献中占有突出地位,但它们对感觉运动适应的贡献仍然存在
不清楚,部分原因是过去的研究采用了将内隐学习过程和外显学习过程混为一谈的任务。
为了阐明小脑和基底神经节对感觉运动适应的具体贡献,我将
使用我导师实验室开发的一组行为任务,旨在隔离不同人的贡献
这项工作的结果修正了我们目前对学习过程的计算理解。
感觉运动适应,并为重新审视参与这一过程的皮层下系统奠定了基础
在拟议的研究中,我们将测试脊髓小脑共济失调 (SCA) 和帕金森病患者。
就基础研究而言,这些结果对于推进我们的研究非常重要。
了解分布式神经系统如何支持运动学习。
这项工作的见解将帮助物理治疗师更好地制定干预措施,以促进完整的学习
机制或增强受损机制。
该 NRSA F31 培训计划包含将在 UC 进行的两个具体目标(三个实验)
伯克利分校在我的资助者 Richard Ivry 教授的监督下 作为 30 年来的 PI,Ivry 教授已经培训了 24 名学生。
博士生和 21 名博士后研究员,其中许多人在研究机构担任教职。
在 Ivry 教授的监督下,该提案概述了一个全面的培训计划,重点是熟练掌握
行为的计算模型、神经心理学方法、写作和资助、呈现和
与教授的频繁互动将使我受益于传播研究、临床教学法和指导。
Hyosub Kim 曾是 Ivry 教授的博士后,现在是特拉华大学的助理教授。
作为一名训练有素的物理治疗师,Kim 提供了计算建模和指导方面的额外专业知识。
还受益于加州大学伯克利分校教授和神经学家 Robert Knight 教授的指导,他
可以提供患者评估方面的额外培训以及多年恒星经验的一般培训图纸
与许多患者群体和受训者进行的神经心理学研究 总之,该培训计划将建立一个
为我未来作为 PI 的角色打下坚实的基础,在认知神经科学和康复的交叉领域工作。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Five Features to Look for in Early-Phase Clinical Intervention Studies.
- DOI:10.1177/1545968320975439
- 发表时间:2021-01
- 期刊:
- 影响因子:4.2
- 作者:Tsay, Jonathan S.;Winstein, Carolee J.
- 通讯作者:Winstein, Carolee J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Tsay其他文献
Jonathan Tsay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Tsay', 18)}}的其他基金
Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
支持内隐和外显感觉运动学习的神经机制
- 批准号:
10387283 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
相似国自然基金
干细胞移植重建缺氧缺血损伤脑基底神经节环路
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
光遗传在基底神经节-丘脑-皮层神经回路脑疾病中的动力学建模调控
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:
rTMS通过前额叶-基底神经节环路调控射精行为的信息处理机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
基底神经节兴奋—抑制通路对运动疲劳的调控作用及机制研究
- 批准号:31971095
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基底神经节的行动选择模型和皮层环路的STDP-强化学习机制
- 批准号:11872183
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Nigrostriatal dopamine mechanisms of cognitive control
黑质纹状体多巴胺认知控制机制
- 批准号:
10639280 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Neurocognitive mechanisms of control over cognitive stability and flexibility
控制认知稳定性和灵活性的神经认知机制
- 批准号:
10709062 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Neural Mechanisms Supporting Implicit and Explicit Sensorimotor Learning
支持内隐和外显感觉运动学习的神经机制
- 批准号:
10387283 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Behavioral and brain network effects of dysfunction in the cognitive cerebellum
认知小脑功能障碍对行为和大脑网络的影响
- 批准号:
10373891 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Preventing and reversing mitochondrial Leigh syndrome with hypoxia
预防和逆转缺氧线粒体利氏综合征
- 批准号:
10544012 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别: