Project 2: Enhancement of Biokinetics using Physiologically-Based Models for Internalized Radionuclides
项目 2:使用基于生理学的内化放射性核素模型增强生物动力学
基本信息
- 批准号:10589877
- 负责人:
- 金额:$ 37.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-10 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAerosolsAgeAnimalsBayesian AnalysisBayesian ModelingBehaviorBenchmarkingBiodistributionBiologicalBiological AssayBloodChemicalsChildComputer softwareConsultationsDataDepositionDevelopmentDevicesDoseDrug KineticsElementsEmploymentEquipment and supply inventoriesEvaluationEventExcisionExcretory functionFemaleGamma RaysGoalsHumanIn VitroInhalationIntakeInternationalKineticsLiquid substanceLungMachine LearningMeasurementMetabolicMethodologyModelingMonitorMonte Carlo MethodMorphologyMusNuclearNuclear AccidentsNuclear Reactor AccidentsOccupationalOral cavityOrganParticle SizeParticulatePathway interactionsPhysiologicalPhysiological ProcessesPopulationProbabilityProbability SamplesRadiation AccidentsRadiation ProtectionRadioisotopesRadiology SpecialtyReportingRespiratory SystemSamplingScanningSodium IodideSolubilitySourceSystemThickTimeTissuesTomogramToxic effectTranslationsTriageUpdateUrinalysisWorkanimal dataartificial neural networkdata modelingdesigndetectorefficacy evaluationin silicoin vivoinnovationmembermorphometrynovelparticlepharmacokinetic modelpregnantreconstructionresponsesexthallium-doped sodium iodideuptake
项目摘要
PROJECT 2: ABSTRACT
Following mass population exposures from radiological or nuclear (RN) events, radionuclide biokinetic models
can be used to determine the time-dependent activity concentrations of internalized radionuclides in various
tissues and organs of the body as needed for dose assessment during triage. RN events may include
radionuclide releases from a radiological dispersion device, an improvised nuclear device, or a nuclear reactor
accident event. Biokinetic models from the International Commission on Radiological Protection (ICRP) are
currently implemented as deterministic (i.e., single “reference”) compartment-based models developed primarily
for occupational radiation protection purposes. We hypothesize that new biokinetic models with realistic RN
source term parameters and metabolic variability representative of an exposed population can be used to reliably
predict radionuclide biodistribution and responses at different levels of biological organization. The overall goal
of Project 2 is to integrate physiologically-based models of radionuclide intake and systemic biokinetics with
stochastic probability distributions of key model parameters. The core challenge in constructing realistic
biokinetic models representative of an exposed non-reference population is the lack of consideration of basic
physiological processes, from defining realistic source terms from RN events and translation to mechanistic
parameters that define inhalation intake kinetics, uptake into blood, and excretion. The proposed expansion in
biokinetic modeling will for the first time allow in-vivo assay and prediction of the efficacy of novel decorporation
agents in humans following an acute RN uptake for a representative population. Primary elements of innovation
in Project 2 include: (1) Development of biokinetic models specific to realistic RN sources; (2) Conducting
stochastic analysis of ICRP 133 Human Respiratory Tract Model for realistic RN source term and biokinetic
behavior; (3) Development of inhalation dose coefficients for exposed population (age/sex/morphometry-
specific) from realistic exposure source terms; (4) Construction of computational fluid and particle dynamics
(CFPD)-based physiological mouth-lung model of particle intake using realistic source terms and measurement
data of particulate distribution in the lungs; (5) Employment of machine learning with physiologically-based
pharmacokinetic models to determine the time-dependent uptake, retention, excretion, and reconstruction of
radionuclides to evaluate the efficacy of decorporation countermeasure agents; and (6) Development of an in-
vivo radiological triage body scanning system correlated with stochastic biokinetics for intake reconstruction and
monitoring of decorporation therapy. The proposed work will support Project 1 software in providing non-
reference inhalation dose coefficients, as well as detector efficiency whole body response functions for triage.
Project 1 and 3 data will be leveraged to a create mesh-based CFPD model of inhalation kinetics. Project 4
animal data will be leveraged to propose animal-to-human scaling models of the efficacy of the decorporation
agent, inclusive of age and sex variables where posible.
项目 2:摘要
大规模人口暴露于放射性或核 (RN) 事件后,放射性核素生物动力学模型
可用于确定各种内化放射性核素的时间依赖性活度浓度
RN 事件期间需要进行剂量评估的身体组织和器官可能包括。
放射性分散装置、简易核装置或核反应堆释放的放射性核素
国际放射防护委员会 (ICRP) 的生物动力学模型是
目前主要作为确定性(即单一“参考”)基于隔间的模型来实现
为了职业辐射防护的目的,我们勇敢地采用了具有现实 RN 的新生物动力学模型。
代表暴露群体的源项参数和代谢变异性可用于可靠地
预测生物组织不同水平的放射性核素生物分布和反应的总体目标。
项目 2 的目的是将基于生理学的放射性核素摄入模型和全身生物动力学与
关键模型参数的随机概率分布是构建现实的核心挑战。
代表暴露的非参考人群的生物动力学模型缺乏考虑基本因素
生理过程,从定义来自 RN 事件的现实源术语以及翻译到机械学
定义吸入动力学、血液摄取和排泄的参数。
生物动力学模型将首次允许体内分析和预测新型修饰的功效
代表性人群对 RN 的急性吸收后,人类中的代理。 创新的主要要素。
项目 2 包括:(1) 开发针对实际 RN 源的生物动力学模型;(2) 进行
ICRP 133 人类呼吸道模型的随机分析,用于现实 RN 源项和生物动力学
行为;(3)制定暴露人群的吸入剂量系数(年龄/性别/形态测量-
(4)计算流体与粒子动力学的构建
基于 (CFPD) 的颗粒摄入生理口肺模型,使用现实源项和测量
(5)基于生理学的机器学习的应用;
药代动力学模型,以确定时间依赖性的摄取、保留、排泄和重建
放射性核素来评估去核对抗剂的功效;以及 (6) 开发一种in-
体内放射分类身体扫描系统与随机生物动力学相关,用于摄入重建和
拟议的工作将支持项目 1 软件提供非
参考吸入剂量系数,以及用于分类的检测器效率全身响应函数。
项目 1 和 3 的数据将用于创建项目 4 的基于网格的 CFPD 吸入动力学模型。
将利用动物数据提出装饰功效的动物到人类的缩放模型
代理人,尽可能包括年龄和性别变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaheen Azim Dewji其他文献
Shaheen Azim Dewji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaheen Azim Dewji', 18)}}的其他基金
Project 2: Enhancement of Biokinetics using Physiologically-Based Models for Internalized Radionuclides
项目 2:使用基于生理学的内化放射性核素模型增强生物动力学
- 批准号:
10327397 - 财政年份:2022
- 资助金额:
$ 37.03万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Electronic Cigarettes: Emerging Ingredients, Acids, Toxicants, and Indicators of Non-Tobacco Nicotine
电子烟:新兴成分、酸、有毒物质和非烟草尼古丁指标
- 批准号:
10884691 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Vaccinating at Mucosal Surfaces with Nanoparticle-conjugated Antigen and Adjuvant
使用纳米颗粒结合的抗原和佐剂在粘膜表面进行疫苗接种
- 批准号:
10587388 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Product Evaluation and Manipulation Core (PEMC)
产品评估和操作核心 (PEMC)
- 批准号:
10666073 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Preclinical development of a synthetic lung surfactant dry powder aerosol for hypoxemia or acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的低氧血症或急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
- 批准号:
10658610 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别: