Project 2: Enhancement of Biokinetics using Physiologically-Based Models for Internalized Radionuclides
项目 2:使用基于生理学的内化放射性核素模型增强生物动力学
基本信息
- 批准号:10327397
- 负责人:
- 金额:$ 37.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-10 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdultAerosolsAgeAnimalsBayesian AnalysisBayesian ModelingBehaviorBenchmarkingBiodistributionBiologicalBiological AssayBloodChemicalsChildComputer softwareConsultationsDataDepositionDevelopmentDevicesDoseDrug KineticsElementsEmploymentEquipment and supply inventoriesEvaluationEventExcisionExcretory functionFemaleGamma RaysGoalsHumanIn VitroInhalationIntakeInternationalKineticsLiquid substanceLungMachine LearningMeasurementMetabolicMethodologyModelingMonitorMonte Carlo MethodMorphologyMusNuclearNuclear AccidentsNuclear Reactor AccidentsOccupationalOral cavityOrganParticle SizeParticulatePathway interactionsPhysiologicalPhysiological ProcessesPopulationProbabilityProbability SamplesRadiation AccidentsRadiation ProtectionRadioisotopesRadiology SpecialtyReportingRespiratory SystemSamplingScanningSodium IodideSolubilitySourceSystemThickTimeTissuesTomogramToxic effectTranslationsTriageUpdateUrinalysisWorkanimal dataartificial neural networkbasedata modelingdesigndetectorefficacy evaluationin silicoin vivoinnovationmembermorphometrynovelparticlepharmacokinetic modelpregnantreconstructionresponsesexthallium-doped sodium iodideuptake
项目摘要
PROJECT 2: ABSTRACT
Following mass population exposures from radiological or nuclear (RN) events, radionuclide biokinetic models
can be used to determine the time-dependent activity concentrations of internalized radionuclides in various
tissues and organs of the body as needed for dose assessment during triage. RN events may include
radionuclide releases from a radiological dispersion device, an improvised nuclear device, or a nuclear reactor
accident event. Biokinetic models from the International Commission on Radiological Protection (ICRP) are
currently implemented as deterministic (i.e., single “reference”) compartment-based models developed primarily
for occupational radiation protection purposes. We hypothesize that new biokinetic models with realistic RN
source term parameters and metabolic variability representative of an exposed population can be used to reliably
predict radionuclide biodistribution and responses at different levels of biological organization. The overall goal
of Project 2 is to integrate physiologically-based models of radionuclide intake and systemic biokinetics with
stochastic probability distributions of key model parameters. The core challenge in constructing realistic
biokinetic models representative of an exposed non-reference population is the lack of consideration of basic
physiological processes, from defining realistic source terms from RN events and translation to mechanistic
parameters that define inhalation intake kinetics, uptake into blood, and excretion. The proposed expansion in
biokinetic modeling will for the first time allow in-vivo assay and prediction of the efficacy of novel decorporation
agents in humans following an acute RN uptake for a representative population. Primary elements of innovation
in Project 2 include: (1) Development of biokinetic models specific to realistic RN sources; (2) Conducting
stochastic analysis of ICRP 133 Human Respiratory Tract Model for realistic RN source term and biokinetic
behavior; (3) Development of inhalation dose coefficients for exposed population (age/sex/morphometry-
specific) from realistic exposure source terms; (4) Construction of computational fluid and particle dynamics
(CFPD)-based physiological mouth-lung model of particle intake using realistic source terms and measurement
data of particulate distribution in the lungs; (5) Employment of machine learning with physiologically-based
pharmacokinetic models to determine the time-dependent uptake, retention, excretion, and reconstruction of
radionuclides to evaluate the efficacy of decorporation countermeasure agents; and (6) Development of an in-
vivo radiological triage body scanning system correlated with stochastic biokinetics for intake reconstruction and
monitoring of decorporation therapy. The proposed work will support Project 1 software in providing non-
reference inhalation dose coefficients, as well as detector efficiency whole body response functions for triage.
Project 1 and 3 data will be leveraged to a create mesh-based CFPD model of inhalation kinetics. Project 4
animal data will be leveraged to propose animal-to-human scaling models of the efficacy of the decorporation
agent, inclusive of age and sex variables where posible.
项目2:摘要
随着放射学或核(RN)事件的大规模群体暴露,放射性生物动力学模型
可用于确定各种内部放射线的时间依赖性活性浓度
人体的组织和器官根据需要进行剂量评估。 RN事件可能包括
从放射性分散装置,改进的核装置或核反应堆中释放了放射线
事故事件。国际放射保护委员会(ICRP)的生物动力学模型是
目前以确定性(即单个“参考”)隔室模型实施
用于职业辐射保护目的。我们假设具有现实RN的新生物动力学模型
曝光人群的来源项参数和代谢变异性可用于可靠
预测不同级别的生物组织的辐射生物分布和反应。总体目标
项目2的内容是将基于物理的放射性摄入量和全身生物动力学的模型与
关键模型参数的随机概率分布。构建现实的核心挑战
代表暴露于非参考人群的生物动力学模型缺乏对基本的考虑
物理过程,从定义现实的源术语从RN事件到翻译到机械
定义吸入摄入动力学,吸收血液和排泄物的参数。提议的扩展
生物动力学建模将首次允许在体内评估和预测新型装饰的效率
急性RN吸收人类的代理人对代表人群。创新的主要要素
在项目2中包括:(1)开发针对现实的RN来源的生物动力学模型; (2)进行
ICRP的随机分析133人类呼吸道模型,用于现实的RN源项和生物动力学
行为; (3)开发暴露人群的吸入剂量系数(年龄/性别/形态计量学
具体)来自现实的暴露源术语; (4)计算流体和粒子动力学的构建
(CFPD)使用逼真的源术语和测量
肺部特定分布的数据; (5)基于身体的机器学习
药代动力学模型,以确定时间依赖性的摄取,保留,排泄和重建
放射线以评估装饰对策剂的效率; (6)发展
体内放射分类身体扫描系统与随机生物动力学相关,用于摄入和重建和
监测装饰疗法。拟议的工作将支持项目1软件,以提供非 -
参考吸入剂量系数以及检测器的效率全身反应分类功能。
项目1和3数据将被利用为基于网格的吸入动力学的CFPD模型。项目4
动物数据将被利用以提出装饰效率的动物到人类缩放模型
特工,包括年龄和性变量的阳性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaheen Azim Dewji其他文献
Comparison of atmospheric radionuclide dispersion models for a risk-informed consequence-driven advanced reactor licensing framework
- DOI:
10.1016/j.jenvrad.2024.107379 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:
- 作者:
Jeffrey Wang;Daniel Clayton;Shaheen Azim Dewji - 通讯作者:
Shaheen Azim Dewji
Shaheen Azim Dewji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaheen Azim Dewji', 18)}}的其他基金
Project 2: Enhancement of Biokinetics using Physiologically-Based Models for Internalized Radionuclides
项目 2:使用基于生理学的内化放射性核素模型增强生物动力学
- 批准号:
10589877 - 财政年份:2022
- 资助金额:
$ 37.45万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Electronic Cigarettes: Emerging Ingredients, Acids, Toxicants, and Indicators of Non-Tobacco Nicotine
电子烟:新兴成分、酸、有毒物质和非烟草尼古丁指标
- 批准号:
10884691 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Vaccinating at Mucosal Surfaces with Nanoparticle-conjugated Antigen and Adjuvant
使用纳米颗粒结合的抗原和佐剂在粘膜表面进行疫苗接种
- 批准号:
10587388 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Product Evaluation and Manipulation Core (PEMC)
产品评估和操作核心 (PEMC)
- 批准号:
10666073 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Preclinical development of a synthetic lung surfactant dry powder aerosol for hypoxemia or acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的低氧血症或急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
- 批准号:
10658610 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别: