Mechanistic roles of the basement membrane mechanics in cellular morphodynamics and tissue patterning of the pre-gastrulating embryo
基底膜力学在原肠胚形成前细胞形态动力学和组织模式中的作用
基本信息
- 批准号:10617195
- 负责人:
- 金额:$ 2.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAffectAnimalsAnteriorArchitectureBasement membraneBiologicalBiological ProcessBiologyCaliforniaCellsCellular biologyCollaborationsComplexDefectDevelopmentDevelopmental BiologyDiffusionEmbryoEmbryonic DevelopmentEndodermEndoderm CellEnvironmentEpiblastEpitheliumEventFellowshipFertilizationFluorescent in Situ HybridizationFosteringFoundationsFutureGene ExpressionGenesGeneticGoalsHumanImageImage AnalysisIn SituIn Situ HybridizationInfertilityKnowledgeLearningMalignant NeoplasmsMammalsMapsMechanicsMesenchymalModelingMolecularMorphogenesisMusNeoplasm MetastasisOrganPathologic ProcessesPatternPattern FormationPersonsPlayPregnancyPreventionPrincipal InvestigatorProcessPropertyReactionResearchRoleRouteSignal TransductionSpecific qualifier valueStructureTechniquesTechnologyTestingTissuesTrainingVisceralWorkblastomere structurecancer diagnosiscancer preventioncareercell behaviorcell fate specificationconditional knockoutdifferential expressionearly pregnancy lossembryo cellembryo cultureembryo tissueexperimental studyextracellulargastrulationgenetic manipulationimage processingimaging approachimplantationinsightinterdisciplinary collaborationmammalian embryologymathematical modelmigrationmortalitymulti-scale modelingnatural Blastocyst Implantationnovel strategiespreservationquantitative imagingskillsstem cellssuperresolution microscopytooltranscriptometranscriptomics
项目摘要
Project Summary/Abstract
Establishing proper tissue-level architecture and patterning during early embryogenesis is crucial for a
successful pregnancy. A high rate of mortality seen in human embryos during the first 2-3 weeks post-fertilization
is a major cause of early pregnancy loss, yet the essential cellular, molecular, and mechanical changes remain
poorly defined. During early post-implantation mammalian embryogenesis, an extra-embryonic epithelial layer,
the visceral endoderm, plays an essential role in the symmetry-breaking event that specifies the anterior-
posterior patterning of the epiblast. Specifically, a subset of the visceral endoderm cells, the anterior visceral
endoderm, migrates toward one end of the future anterior-posterior axis to pattern the epiblast. Recent work
from our lab reveals that the embryonic basement membrane plays an essential role in symmetry breaking and
morphogenesis that sets the stage for gastrulation. However, how the extracellular mechanics modulates the
collective cellular dynamics and instructs cell identities for pattern formation remains not known.
Here we propose to determine how the embryonic basement membrane coordinates the collective cell
behaviors and facilitates anterior-posterior specification for pattern formation. First, we will comprehensively map
the cell behaviors of the entire visceral endoderm with imaging approaches and define the role of the basement
membrane in anterior visceral endoderm migration through genetic perturbations in stem cell-derived embryo-
like structures as well as in the natural embryos. Next, we will map the basement membrane mechanics and
apply a single-cell transcriptomics approach to generate in situ cell fate maps of the pre-gastrulating embryos.
We will functionally test how the basement membrane mechanics regulate cell identities by correlating the gene
expression profiles with basement membrane architecture and validate the findings with basement membrane-
perturbed embryos. Finally, we will implement multi-scale mathematical models that integrate cell identities and
cell dynamics with the basement membrane mechanics to uncover mechanisms of pattern formation.
Overall, these experiments will unveil functional roles of the extraembryonic environment in defining the cell
identities of the pre-gastrulation embryos. These findings will inform subsequent studies in my future goals on
the conserved roles of the basement membrane and the extraembryonic tissues in topologically distinct embryos
seen in human. Training during my fellowship period will expand my skillsets toward studying the more complex
biology of mammals and broaden my knowledge on new aspects of developmental biology. The research
environment at California Institute of Technology will further foster interdisciplinary collaborations that allow the
development of novel approaches to investigate early mammalian embryogenesis.
项目摘要/摘要
在早期胚胎发生过程中建立适当的组织水平结构和图案化对于A至关重要
成功怀孕。在施肥后的头2-3周内,人类胚胎的死亡率很高
是早期怀孕早期丧失的主要原因,但是必要的细胞,分子和机械变化仍然存在
定义不佳。在植入后早期哺乳动物胚胎发生期间,胚胎外皮层,
内脏内胚层在对称性的事件中起着至关重要的作用,该事件指定了前前 -
层状的后构图。具体而言,内脏内脏细胞的一个子集,前内脏
内胚层向未来前后轴的一端迁移,以对层细胞进行模拟。最近的工作
从我们的实验室中发现,胚胎基底膜在对称性破裂和
形态发生奠定了胃阶段。但是,细胞外力学如何调节
集体细胞动力学和指示模式形成的细胞身份尚不清楚。
在这里,我们建议确定胚胎基底膜如何坐标集体细胞
行为并促进了图案形成的前后验规范。首先,我们将全面映射
通过成像方法的整个内脏内胚层的细胞行为,并定义了地下室的作用
内脏内胚层迁移的膜通过干细胞衍生的胚胎中的遗传扰动
像结构以及天然胚胎一样。接下来,我们将绘制地下室膜力学和
应用单细胞转录组学方法来生成固定前胚胎的原位细胞命运图。
我们将在功能上测试地下膜力学如何通过相关的基因来调节细胞身份
具有地下膜结构的表达谱,并用地下膜验证发现
干扰的胚胎。最后,我们将实施多尺度的数学模型,以整合细胞身份和
用地下膜力学的细胞动力学揭示了模式形成的机制。
总体而言,这些实验将揭示出胚外环境在定义细胞中的功能作用
术前胚胎的身份。这些发现将在我未来的目标中为随后的研究提供信息
地下室膜的保守作用和拓扑不同胚胎中的胚外组织
在人类中看到。在我的团契期间的培训将使我的技能集扩大到研究更复杂的
哺乳动物的生物学,扩大了我对发育生物学新方面的了解。研究
加利福尼亚理工学院的环境将进一步促进跨学科合作
开发新的方法来研究早期哺乳动物的胚胎发生。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong-Yuan Chen其他文献
Dong-Yuan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong-Yuan Chen', 18)}}的其他基金
Integrating cell identities and morphodynamics through extracellular cues
通过细胞外线索整合细胞身份和形态动力学
- 批准号:
10644461 - 财政年份:2023
- 资助金额:
$ 2.53万 - 项目类别:
Mechanistic roles of the basement membrane mechanics in cellular morphodynamics and tissue patterning of the pre-gastrulating embryo
基底膜力学在原肠胚形成前细胞形态动力学和组织模式中的作用
- 批准号:
10392887 - 财政年份:2021
- 资助金额:
$ 2.53万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 2.53万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 2.53万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 2.53万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 2.53万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 2.53万 - 项目类别: