Cross-modal enhancement of auditory plasticity and performance in adults
跨模式增强成人听觉可塑性和表现
基本信息
- 批准号:10589190
- 负责人:
- 金额:$ 1.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAreaAuditoryAuditory areaAutomobile DrivingBehaviorBehavioralBlindnessBrainCell NucleusCellsChemosensitizationCochlear ImplantsDataDetectionDevelopmentDiscriminationDisinhibitionEnvironmentExcitatory SynapseFeedbackHearingImageInjuryLateralLifeMediatingModalityMusNerve DegenerationNeuronsNeurophysiology - biologic functionOperative Surgical ProceduresOrganPatientsPerformancePeripheralPopulationPrognosisPublishingRecoveryRecovery of FunctionRegulationReportingResearchRogaineRoleSensorySignal TransductionSourceStimulusStrokeSynapsesTestingThalamic structureTherapeuticTimeTinnitusVisionVisually Impaired PersonsWorkauditory processingauditory thalamusbasebehavioral outcomecritical periodexperienceimprovedin vivoinformation processinginsightnovelpostnatal developmentreceptive fieldresponsesoundspeech recognitionsuccesstherapy developmenttwo-photonvisual deprivationvocalization
项目摘要
Project Summary
It is well documented that the ability of the brain to undergo plasticity becomes limited in adults. In
particular, sensory experience-dependent plasticity of cortical circuits is rather confined to a limited time during
development, termed the critical period. Recovery and refinement of sensory processing is therefore difficult in
adults. For example, the success rate of speech recognition in artificial cochlear implant patients becomes
quite low, if the surgery is done later in life. Hence discovery of mechanisms that can recover adult cortical
plasticity is of essence to benefit recovery of hearing or for treating abnormal auditory processing as occurs
with tinnitus. We found that temporary visual deprivation is quite effective at producing large-scale plasticity in
the adult primary auditory cortex (A1) of mice. Such changes occurred as potentiation of feedforward excitatory
synapses from the primary auditory thalamus (MGBv) to layer 4 (L4) as well as L4 to L2/3. This was
accompanied by weakening of synapses arising from lateral intracortical sources to L2/3 of A1. In parallel, we
also observed refinement of cortical circuits of A1 L4 and L2/3. Collectively, these changes suggest that A1
circuit adapts to allow better processing of bottom-up auditory inputs, which is consistent with our published
observation of refinement of A1 L4 neuronal receptive field and lowering of detection threshold in visually
deprived mice. In this application, we aim to determine the mechanisms involved in driving adult A1 plasticity
with visual deprivation, and whether visual deprivation improves auditory behavior in adults. Based on our
observation that visual deprivation induced potentiation of thalamocortical (TC) inputs to A1 L4 requires
audition, but no due to changes in the auditory environment, we surmise that there is central adaptation in
circuits mediating auditory signals going through the thalamus and the cortex. In particular, we hypothesize
that short-term visual deprivation promotes A1 plasticity in adults by regulating inhibitory circuits at the level of
thalamus and cortex (Aim 1). The circuit and synaptic adaptation seen in A1 following vision loss accompanied
refinement of A1 L4 neural function, and is predicted to enhance auditory function. We will examine how short-
term visual deprivation alters auditory behavioral tasks in adults, and investigate whether this is due to
changes in A1 neuronal responses and population encoding during auditory tasks using in vivo 2-photon
imaging (Aim 2). Results from our proposed study will provide mechanistic understanding on how short-term
visual deprivation enables plasticity of adult A1 via regulation of thalamic and cortical circuits, and will provide
means to enhance auditory processing in the adult brain that could benefit development of treatment options
for enhancing or recovering auditory function as would be needed for better prognosis of artificial cochlear
implants. Furthermore, our results can be generalized to provide insights into how cortical circuits adapt to
losing major inputs as it may happen during injury, stroke, and neuronal degeneration.
项目摘要
有充分的文献证明,大脑经历可塑性的能力在成年人中受到限制。在
特别的,感官体验依赖性皮层电路的可塑性仅限于有限的时间
开发,称为关键时期。因此,很难在感官处理中恢复和完善
成年人。例如,人工耳蜗植入物患者的语音识别成功率变成
如果手术在以后的生活中进行,则很低。因此发现可以恢复成人皮质的机制
可塑性至关重
带有耳鸣。我们发现,临时视觉剥夺在产生大规模可塑性方面非常有效
小鼠的成年初级听觉皮层(A1)。这样的变化发生在进餐兴奋性的增强
从主要听觉丘脑(MGBV)到第4(L4)以及L4至L2/3的突触。这是
伴随着从侧面内部源到A1的L2/3引起的突触削弱。并行,我们
还观察到A1 L4和L2/3的皮质回路的细化。总的来说,这些变化表明A1
电路适应以更好地处理自下而上的听觉输入,这与我们已发布的
观察A1 L4神经元接受场的细化和视觉阈值的降低
被剥夺的老鼠。在此应用中,我们旨在确定驾驶成人A1可塑性涉及的机制
视觉剥夺以及视觉剥夺是否可以改善成人的听觉行为。基于我们
观察到视觉剥夺引起丘脑皮质(TC)输入到A1 L4的增强
试镜,但由于听觉环境的变化没有,我们推测
电路介导了通过丘脑和皮质的听觉信号。特别是,我们假设
短期视觉剥夺通过调节抑制回路的水平来促进成人的A1可塑性
丘脑和皮层(目标1)。伴随视力丧失后在A1中看到的电路和突触适应
A1 L4神经功能的细化,预计可以增强听觉功能。我们将研究如何短暂
术语视觉剥夺会改变成人的听觉行为任务,并调查是否归因于
使用Vivo 2-Photon在听觉任务过程中A1神经元反应和人群编码的变化
成像(目标2)。我们拟议的研究的结果将提供有关短期如何的机械理解
视觉剥夺可以通过调节丘脑和皮质电路来使成人A1的可塑性,并将提供
增强成人大脑中的听觉处理的手段,可以使治疗选择的发展有益
为了增强或恢复听觉功能,需要更好地预测人工耳蜗
植入物。此外,我们的结果可以概括以提供有关皮质电路如何适应的见解
在受伤,中风和神经元变性过程中可能会失去重大输入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK O KANOLD其他文献
PATRICK O KANOLD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK O KANOLD', 18)}}的其他基金
HIGH THROUGHPUT HOME CAGE PLATFORMS FOR INVESTIGATING NEUROPSYCHIATRIC DISORDERS IN MICE
用于研究小鼠神经精神疾病的高通量家用笼式平台
- 批准号:
10325608 - 财政年份:2021
- 资助金额:
$ 1.19万 - 项目类别:
Cross-modal enhancement of auditory plasticity and performance in adults
跨模式增强成人听觉可塑性和表现
- 批准号:
10203918 - 财政年份:2020
- 资助金额:
$ 1.19万 - 项目类别:
Cross-modal enhancement of auditory plasticity and performance in adults
跨模式增强成人听觉可塑性和表现
- 批准号:
10668548 - 财政年份:2020
- 资助金额:
$ 1.19万 - 项目类别:
Cross-modal enhancement of auditory plasticity and performance in adults
跨模式增强成人听觉可塑性和表现
- 批准号:
10748930 - 财政年份:2020
- 资助金额:
$ 1.19万 - 项目类别:
Cross-modal enhancement of auditory plasticity and performance in adults
跨模式增强成人听觉可塑性和表现
- 批准号:
10028097 - 财政年份:2020
- 资助金额:
$ 1.19万 - 项目类别:
Cross-modal enhancement of auditory plasticity and performance in adults
跨模式增强成人听觉可塑性和表现
- 批准号:
10667562 - 财政年份:2020
- 资助金额:
$ 1.19万 - 项目类别:
相似国自然基金
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全球生产网络中领先企业策略合作伙伴区位重构及其对承接地区域发展的影响——战略耦合的视角
- 批准号:42371188
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
双循环下区域低碳创新多重网络的形成机制、影响效应与平衡策略研究
- 批准号:72374090
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
空间多尺度特征与时空相关的台风短临降水区域和强度预报影响研究
- 批准号:42306214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太平洋和大西洋年代际海温模态对大湄公河次区域夏季降水变化的协同影响研究
- 批准号:42375050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 1.19万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 1.19万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 1.19万 - 项目类别:
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
- 批准号:
10679252 - 财政年份:2023
- 资助金额:
$ 1.19万 - 项目类别: