PRECLINICAL EVALUATION OF NANOPARTICULATE MINERALIZED COLLAGEN GLYCOSAMINOGLYCAN MATERIALS IN CALVARIAL REGENERATION
纳米颗粒矿化胶原蛋白糖胺聚糖材料在颅骨再生中的临床前评估
基本信息
- 批准号:10614475
- 负责人:
- 金额:$ 36.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AutologousBiocompatible MaterialsBiomechanicsBlood VesselsBone RegenerationCalciumCalcium ChannelCalvariaCellsCephalicCerebrumChildhoodClinicalCollagenComplementConsumptionDataDefectDevelopmentDevicesDimensionsEquilibriumExtracellular MatrixGlycosaminoglycansGoalsGrowth FactorHumanInfectionInflammationInvestigationIonsKnowledgeMalignant NeoplasmsMechanicsMediatingMediatorMesenchymal Stem CellsMethodsMineralsMorbidity - disease rateNatural regenerationNeurologicOperative Surgical ProceduresOryctolagus cuniculusOsteogenesisPerformancePhosphorylationPreparationProcessPropertyReceptor SignalingResearchSafetySecondary toSignal InductionSignal PathwaySignal TransductionSiteSkeletonStrokeSupplementationTechniquesTestingTimeTissuesTraumaUnited States Food and Drug AdministrationVascularizationVocationWorkbiomechanical modelbonebone healingbone morphogenetic protein receptorsclinical materialclinical translationclinically relevantcongenital anomalycostcraniumcranium plastic repairdosagehealingimplantationin vivoinorganic phosphatemineralizationnanocompositenanoparticulateosteogenicpreclinical evaluationpreclinical safetypsychologicreconstructionregenerativeregenerative approachregenerative therapysample fixationscaffoldside effectsocialsodium phosphatestem cell expansionstem cellssymportertechnology developmentvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
Defects of the cranial skeleton occur frequently in trauma, stroke, cancer, and congenital anomalies resulting in
significant neurological, psychological, social, and vocational burdens. The limitations of current clinical options
for cranial defect reconstruction, such as tissue availability and donor site morbidity in autologous bone and
extrusion, infection, and cost in alloplastic materials, provide an impetus to develop methods that specifically
target calvarial bone regeneration. Despite decades of research, contemporary regenerative strategies
consisting of expanded stem cells and growth factor cocktails delivered by scaffolding materials have not
attained clinical translation secondary to the drawbacks of surgical impracticality, cost, time consumption, and
the untoward effects of supraphysiologic dosages of growth factors. With the increasing knowledge of the
instructive capabilities of the extracellular matrix, we previously demonstrated the efficacy of an extracellular
matrix-inspired material composed of nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) for
regeneration of massive calvarial defects without ex vivo progenitor cell expansion or exogenous growth factor
supplementation. We further showed that the mechanistic basis for MC-GAG induced osteogenic differentiation
was due to an autogenous activation of the bone morphogenetic protein receptor (BMPR) signaling pathway.
Our previous work established the concept of MC-GAG as a materials-only regenerative strategy. However,
three questions require further investigation. First, what are the properties of MC-GAG that induce
osteogenesis and can they be refined? Second, are there any untoward side effects with the usage of MC-
GAG? Third, as cerebral protection is paramount in clinically relevant defects and regeneration offers no
protection until healing is complete, would MC-GAG demonstrate the same amount of regeneration as a
composite with a clinically available resorbable material for cerebral protection? In Aim 1, we will determine the
contributions of calcium and phosphate-induced signaling and mechanical stiffness in MC-GAG-mediated
osteogenesis in human mesenchymal stem cells. We hypothesize that calcium and phosphate ion signaling
may be the primary triggers for osteogenic differentiation on MC-GAG, bridging the connection between the
material, autogenous BMPR signaling, matrix mineralization, and bone healing. In Aim 2, we will evaluate a
composite of MC-GAG with poly-D,L-lactide (PDLLA) mesh, a clinically available resorbable cranioplasty
material, in a rabbit calvarial defect model for biomechanical properties, vascularity, inflammation, bone
healing, and local and systemic safety. We hypothesize that MC-GAG/PDLLA composites would result in bone
regeneration equivalent to MC-GAG alone and add the dimension of cerebral protection during regeneration.
Our proposed studies are unified in the goal of calvarial regenerative technology development. The current
proposal will allow us to understand mechanistic interactions between MC-GAG and progenitor cells to further
refine the material and to generate preclinical safety and performance data for an IDE application to the FDA.
项目摘要/摘要
颅骨骨骼的缺陷经常出现在创伤,中风,癌症和先天异常中,导致
重要的神经,心理,社会和职业负担。当前临床选择的局限性
用于颅骨缺陷重建,例如自体骨的组织可用性和供体部位发病率
同种塑料材料中的挤出,感染和成本,为开发特定的方法提供了动力
靶性颅骨再生。尽管进行了数十年的研究,当代的再生策略
由脚手架材料传递的膨胀干细胞和生长因子鸡尾酒组成的尚未
获得了手术不切实际,成本,时间消耗和
生长因子上刻度生理学剂量的不良影响。随着对
细胞外基质的启发性能力,我们先前证明了细胞外的功效
由基质启发的材料组成的材料由纳米式矿化胶原蛋白糖胺聚糖(MC-GAG)组成
没有体内祖细胞膨胀或外源生长因子的大规模颅骨缺陷的再生
补充。我们进一步表明,MC-GAG的机械基础诱导成骨分化
是由于骨形态发生蛋白受体(BMPR)信号通路的自体激活。
我们以前的工作将MC-GAG的概念确立为仅材料再生策略。然而,
三个问题需要进一步调查。首先,诱导MC-GAG的特性是什么
成骨,可以改进吗?其次,使用MC-是否有任何不良副作用
插科打诨?第三,因为脑部保护至关重要,而再生则没有
在愈合完成之前的保护,MC-GAG会证明与一个相同的再生
复合材料,具有临床上可用的可吸收材料以用于脑保护?在AIM 1中,我们将确定
MC-GAG介导的钙和磷酸盐诱导的信号传导和机械刚度的贡献
人间充质干细胞中的成骨。我们假设钙和磷酸离子信号传导
可能是MC-GAG上成骨分化的主要触发因素,桥接了
材料,自体BMPR信号传导,基质矿化和骨愈合。在AIM 2中,我们将评估
用聚-D,L-乳酸(PDLLA)网格的MC-GAG复合材料,这是一种临床可吸收的颅骨成形术
材料,在生物力学特性,血管,炎症,骨骼中的兔校友缺陷模型中
治愈,以及本地和系统的安全。我们假设MC-GAG/PDLLA复合材料会导致骨骼
再生相当于单独使用MC-GAG,并在再生过程中添加大脑保护的维度。
我们提出的研究是统一的,以钙化再生技术开发的目标。电流
提案将使我们能够理解MC-GAG和祖细胞之间的机械相互作用,以进一步
完善材料并生成临床前的安全性和性能数据,以将IDE应用于FDA。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation and treatment of facial feminization surgery: part I. forehead, orbits, eyebrows, eyes, and nose.
- DOI:10.5999/aps.2021.00199
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Dang BN;Hu AC;Bertrand AA;Chan CH;Jain NS;Pfaff MJ;Lee JC;Lee JC
- 通讯作者:Lee JC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justine Chia Lee其他文献
Justine Chia Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justine Chia Lee', 18)}}的其他基金
Osteoclast modulatory biomaterials for skull regeneration
用于颅骨再生的破骨细胞调节生物材料
- 批准号:
10451692 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
Osteoclast modulatory biomaterials for skull regeneration
用于颅骨再生的破骨细胞调节生物材料
- 批准号:
10664867 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
Osteoclast modulatory biomaterials for skull regeneration
用于颅骨再生的破骨细胞调节生物材料
- 批准号:
10220944 - 财政年份:2020
- 资助金额:
$ 36.95万 - 项目类别:
PRECLINICAL EVALUATION OF NANOPARTICULATE MINERALIZED COLLAGEN GLYCOSAMINOGLYCAN MATERIALS IN CALVARIAL REGENERATION
纳米颗粒矿化胶原蛋白糖胺聚糖材料在颅骨再生中的临床前评估
- 批准号:
9906198 - 财政年份:2019
- 资助金额:
$ 36.95万 - 项目类别:
PRECLINICAL EVALUATION OF NANOPARTICULATE MINERALIZED COLLAGEN GLYCOSAMINOGLYCAN MATERIALS IN CALVARIAL REGENERATION
纳米颗粒矿化胶原蛋白糖胺聚糖材料在颅骨再生中的临床前评估
- 批准号:
10383680 - 财政年份:2019
- 资助金额:
$ 36.95万 - 项目类别:
Human Bone Engineering and Resorption in a Novel Mineralized Collagen Scaffold
新型矿化胶原蛋白支架中的人体骨骼工程和吸收
- 批准号:
8921043 - 财政年份:2015
- 资助金额:
$ 36.95万 - 项目类别:
Human Bone Engineering and Resorption in a Novel Mineralized Collagen Scaffold
新型矿化胶原蛋白支架中的人体骨骼工程和吸收
- 批准号:
9335249 - 财政年份:2015
- 资助金额:
$ 36.95万 - 项目类别:
Human Bone Engineering and Resorption in a Novel Mineralized Collagen Scaffold
新型矿化胶原蛋白支架中的人体骨骼工程和吸收
- 批准号:
9105156 - 财政年份:2015
- 资助金额:
$ 36.95万 - 项目类别:
相似国自然基金
ePTFE带瓣外管道原位内皮化和瓣膜生物力学特性实验研究
- 批准号:81873501
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
力学主动式骨组织工程支架的生物力学效应与机制研究
- 批准号:31771050
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
人工括约肌的生物力学相容性及临床应用技术研究
- 批准号:30970704
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
生理环境下β型钛合金材料生物涂层与骨组织界面的生物力学相容性
- 批准号:30870611
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
生物医用钛合金外科植入材料的生物力学相容性匹配
- 批准号:30770586
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
- 批准号:
10655959 - 财政年份:2023
- 资助金额:
$ 36.95万 - 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
- 批准号:
10811305 - 财政年份:2023
- 资助金额:
$ 36.95万 - 项目类别:
Highly Elastic Biomaterial Development for Urethral Application
尿道应用的高弹性生物材料开发
- 批准号:
10573094 - 财政年份:2023
- 资助金额:
$ 36.95万 - 项目类别:
Mineral Coated Microparticles for Stabilization and Delivery of Complexed mRNA for Healing of Long Bone Defects
用于稳定和递送复合 mRNA 的矿物涂层微粒,用于治疗长骨缺损
- 批准号:
10464358 - 财政年份:2023
- 资助金额:
$ 36.95万 - 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
- 批准号:
10672642 - 财政年份:2023
- 资助金额:
$ 36.95万 - 项目类别: