CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
CRCNS:睡眠中海马序列动态的无监督学习
基本信息
- 批准号:10614754
- 负责人:
- 金额:$ 7.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsBrainCellsCognitionCollaborationsCommunitiesDataElectric StimulationEnvironmentEvaluationEventHippocampusHospitalsHourInformation StorageInstructionLearningMemoryMemory impairmentMethodsModelingNatureNeuronsNeurosciencesNoisePathway interactionsPatternPlayPopulationPublic PolicyReportingRestRoleSchoolsSleepStructureTechniquesTimeTrainingVisitawakedesignexamination questionsexperienceimprovedinformation organizationinterestmarkov modelmemory consolidationmemory processnoveloptogeneticssequence learningsoundtheoriesunsupervised learning
项目摘要
In unit recordings from large populations of neurons, fast compressed sequential firing of neurons during
rest and early sleep have been found to replay patterns first observed in active awake experience. These
remarkable patterns have sparked widespread interest in the scientific community and beyond. Sequence
replay is now considered to play a critical role in the long-term stabilization and storage of mnemonically
important information. However, despite the general acknowledgement of the importance of the sequential
structure, very little is known about the null background against which replay is compared.
Specifically, are apparently 'non-replaying' spike patterns, as seen in late sleep, just simply noise?
Because replay is typically assessed by comparison against a fixed known template, most methods can
only determine whether the resemblance to the template is more than what might be expected from
random spike trains. But these methods cannot appraise whether other patterns remain in the
nonsignificant events. Recently, the Diba and Kemere labs successfully collaborated to address precisely
this issue. We developed methods based on hidden Markov models (HMMs) to uncover temporal
structure in spike trains of neurons in an unsupervised template-free manner. In this proposal, we aim to
further improve these methods and to evaluate the hidden structure of spike trains in hippocampal
neuronal populations during sleep. In our second specific aim, we will use HMMs to determine both
co-active ensemble ("contextual") and temporal patterns ("sequential") structure in hippocampal spike
trains in both pre- and post-task sleep. In the third specific aim, we will probe the essence of sleep replay
further, by exposing animals to multiple novel and familiar maze environments prior to long durations of
sleep. In the fourth specific aim, we will perform closed-loop disruption of neuronal population patterns to
examine the causal interplay and reverberation of these patterns from early to late sleep. In summary, our
proposal is designed to provide strongest characterization to date of the structure of "noise" in replay
events.
RELEVANCE (See instructions):
This study will provide an opening to evaluate the role of sleep in reorganizing information in the brain and
help to identify critical time windows and neuronal activities during sleep which are particularly important
for information storage and stabilization. Our assumptions and deductions about the nature and purpose
of sleep implicitly inform all manner of public policy, from the durations of shifts for hospital and relief
workers, to morning start times of public schools. Understanding the function and mechanisms of sleep H
在大量神经元种群的单位记录中,在
已经发现休息和早期睡眠是在主动清醒体验中首先观察到的模式。这些
出色的模式引发了对科学界及其他地区的普遍兴趣。顺序
现在,重播被认为在长期稳定和储存中起着至关重要的作用
重要信息。然而,尽管一般承认顺序的重要性
关于比较重播的无效背景的结构,几乎没有什么了解。
具体而言,显然是“非重新播放”的尖峰图案,如晚睡觉时所见,只是噪音吗?
由于通常通过与固定已知模板进行比较来评估重播,因此大多数方法可以
仅确定与模板的相似性是否超出
随机尖峰火车。但是这些方法无法评估其他模式是否保留在
不重要的事件。最近,Diba和Kemere Labs成功合作,准确地解决
这个问题。我们开发了基于隐藏的马尔可夫模型(HMM)的方法以发现时间
无监督模板的方式的神经元尖峰列车中的结构。在此提案中,我们的目标是
进一步改进这些方法并评估海马中尖峰列车的隐藏结构
睡眠期间的神经元种群。在我们的第二个特定目标中,我们将使用HMM来确定
海马尖峰中的共同活性集合(“上下文”)和时间模式(“顺序”)结构
在任务前和任务后睡觉。在第三个特定目标中,我们将探究睡眠重播的本质
此外,通过在长时间之前将动物暴露于多个新颖和熟悉的迷宫环境
睡觉。在第四个特定目标中,我们将对神经元种群模式进行闭环破坏至
检查这些模式从早期到晚睡觉的因果相互作用和混响。总而言之,我们的
建议旨在为重播中“噪声”结构的结构提供最强的表征
事件。
相关性(请参阅说明):
这项研究将为评估睡眠在大脑中的信息重组中的作用提供开放和
帮助确定睡眠期间关键的时间窗口和神经元活动,这尤其重要
用于信息存储和稳定。我们对性质和目的的假设和推论
从医院和救济的转变期间,睡眠隐含地告知各种公共政策
工人,到公立学校的早晨开始。了解睡眠的功能和机制h
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracing a Path for Memory in the Hippocampus.
- DOI:10.1016/j.neuron.2020.06.034
- 发表时间:2020-07-22
- 期刊:
- 影响因子:16.2
- 作者:Dutta S;Gao S;Chu JP;Kemere C
- 通讯作者:Kemere C
Foraging Under Uncertainty Follows the Marginal Value Theorem with Bayesian Updating of Environment Representations.
不确定性下的觅食遵循边际值定理和环境表示的贝叶斯更新。
- DOI:10.1101/2024.03.30.587253
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Webb,James;Steffan,Paul;Hayden,BenjaminY;Lee,Daeyeol;Kemere,Caleb;McGinley,Matthew
- 通讯作者:McGinley,Matthew
Extended Poisson Gaussian-Process Latent Variable Model for Unsupervised Neural Decoding.
用于无监督神经解码的扩展泊松高斯过程潜变量模型。
- DOI:10.1101/2024.03.04.583340
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Luo,DellaDaiyi;Giri,Bapun;Diba,Kamran;Kemere,Caleb
- 通讯作者:Kemere,Caleb
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAMRAN DIBA其他文献
KAMRAN DIBA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAMRAN DIBA', 18)}}的其他基金
Div Supp: Daniela del Rio Pulido CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
Div Supp:Daniela del Rio Pulido CRCNS:睡眠中海马序列动态的无监督学习
- 批准号:
10527115 - 财政年份:2022
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
CRCNS:睡眠中海马序列动态的无监督学习
- 批准号:
10191062 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
CRCNS:睡眠中海马序列动态的无监督学习
- 批准号:
10542964 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
CRCNS:睡眠中海马序列动态的无监督学习
- 批准号:
10405544 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
CRCNS:睡眠中海马序列动态的无监督学习
- 批准号:
9916188 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: Unsupervised Learning of Hippocampal Sequence Dynamic in Sleep
CRCNS:睡眠中海马序列动态的无监督学习
- 批准号:
10614540 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
Enhanced cAMP Signaling Effects on Hippocampal Oscillations and Memory
增强 cAMP 信号对海马振荡和记忆的影响
- 批准号:
9762981 - 财政年份:2018
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: US-German Proposal: Mechanisms of Sequence Generation in the Hippocampus
CRCNS:美德提案:海马序列生成机制
- 批准号:
9606684 - 财政年份:2017
- 资助金额:
$ 7.06万 - 项目类别:
CRCNS: US-German Proposal: Mechanisms of sequence generation in the hippocampus
CRCNS:美德提案:海马序列生成机制
- 批准号:
9119092 - 财政年份:2015
- 资助金额:
$ 7.06万 - 项目类别:
Optogenetic disruption of the multi-synaptic pathway to CA1 during hippocampal oscillations
海马振荡期间 CA1 多突触通路的光遗传学破坏
- 批准号:
9068352 - 财政年份:2015
- 资助金额:
$ 7.06万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
用类脑器官研究PARD6G调控哺乳动物细胞不对称分裂的分子机制
- 批准号:32300611
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两栖动物反捕食策略在脑容量进化中的作用研究
- 批准号:32370456
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于单细胞转录组技术探索两侧对称动物脑的起源及演化创新
- 批准号:32370666
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
灵长类动物脑岛叶皮层内感知的高密度映射图谱
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 7.06万 - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 7.06万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别: