Next Generation Temporal Interference Stimulation for Non-Invasive Neuromodulation
用于非侵入性神经调节的下一代时间干扰刺激
基本信息
- 批准号:10615485
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electrostimulation (ES) is a versatile and efficient tool for interrogating, altering, and manipulating neural
activities in health and disease. Deep brain ES delivered with implanted electrodes requires an elaborate
neurosurgery and carries risks of tissue damage, bleeding, stroke, infection, and inflammation. This limits the
use of deep brain ES for disease diagnostics and conditions that may not justify the risks.
Non-invasive targeted deep brain ES has long been a major quest, with countless potential applications.
The challenge is avoiding stimulation near surface electrodes, where the electric field is the strongest, while
stimulating at a depth by a (much) weaker electric field. One way to stimulate at a distance is by temporal
interference (TI) of two high-frequency sine waves delivered with a small frequency shift. The interference of
two such waves creates an amplitude-modulated stimulus at the target. Assumed demodulation of this signal
by neurons leads to their excitation at the modulation frequency.
Here, we introduce an entirely different concept of the temporal interference, based on (a) complete
cancellation of identical frequency carrier signals at the target, and (b) on the introduction of transient
distortions in one or both these signals. The distortions, such as a brief frequency or phase shift, will be
concealed by the strong periodic signal near the stimulating electrodes and will not lead to excitation at the
surface. However, these distortions will add up at the remote target location. They will stand out from the
“silent” background and will readily lead to excitation despite the attenuation of the electric field with distance.
We will perform mechanistic studies which support this next generation TI (NG-TI) stimulation paradigm. We
will continue with the design and experimental evaluation of different NG-TI protocols in vitro, in comparison
with the “standard” TI. We will systematically analyze the impact of TI stimulation parameters, to achieve
targeted tuning and modulation of individual neurons and neuronal circuitry. We hypothesize that NG-TI can be
improved for more focal stimulation, with much better penetration. It will have lower electric charge stimulation
threshold and enable better steerability than the standard TI. The most efficient NG-TI protocols will further be
validated by in vivo animal experiments. We will qualitatively compare targeting, possible off-site effects,
current consumption, and steerability of NG-TI and the standard TI. We will also define the feasibility and
model the electric field parameters for NG-TI stimulation at distances useful for medical applications. The
effects will be linked to dielectric and physiological properties of neurons and neural tissue, to build predictive
models for non-invasive deep brain stimulation in large animal and human trials. This project will lay the ground
to translate the NG-TI technology for disease diagnosis and treatment.
静电(ES)是一种用途广泛,有效的工具,用于询问,改变和操纵中性
健康和疾病的活动。用植入电极传递的深脑ES需要精心制作
神经外科手术并承担组织损伤,出血,中风,感染和注射的风险。这限制了
将深脑ES用于可能无法证明风险合理的疾病诊断和疾病。
长期以来,非侵入性的靶向深脑ES一直是一个重大的追求,具有无数的潜在应用。
面临的挑战是避免在电场强的表面电气附近刺激,而
通过(多)较弱的电场在深度刺激深度。在远处刺激的一种方法是临时
两种高频正弦波的干扰(Ti)以较小的频移提供。干扰
两个这样的波在目标上产生了放大器调节的刺激。假定该信号的解调
神经元在调制频率下导致它们的兴奋。
在这里,我们基于(a)的完整介绍了暂时干扰的完全不同的概念
取消目标处相同的频率载体信号,以及(b)引入瞬态
一个或两个信号中的扭曲。扭曲(例如短暂频率或相移)将是
由刺激电子附近的强元素信号隐藏,不会导致兴奋
表面。但是,这些扭曲将在远程目标位置加起来。他们将从
“沉默”背景,并将很容易地导致兴奋的目的地,距离电场的衰减。
我们将进行机械研究,以支持下一代Ti(NG-TI)刺激范式。我们
相比之下,将继续对不同NG-TI方案的设计和实验评估
使用“标准” Ti。我们将系统地分析TI模拟参数的影响,以实现
单个神经元和神经元电路的靶向调节和调节。我们假设Ng-ti可以是
改进了更高的局灶性刺激,并具有更好的穿透力。它将具有较低的电荷刺激
阈值并启用比标准Ti更好的可固定性。最有效的NG-TI协议将进一步
通过体内动物实验验证。我们将定性地比较目标,可能的异地效果,
NG-TI和标准Ti的当前消耗以及可引导性。我们还将定义可行性和
在对医疗应用有用的距离上进行NG-TI模拟的电场参数建模。
效果将与神经元和神经元的营养和物理特性有关,以建立预测性
大型动物和人类试验中非侵入性深脑刺激的模型。这个项目将奠定基础
转化用于疾病诊断和治疗的NG-TI技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Andrei G Pakhomov的其他基金
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:1066976710669767
- 财政年份:2022
- 资助金额:$ 24万$ 24万
- 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:1051545910515459
- 财政年份:2022
- 资助金额:$ 24万$ 24万
- 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:89418958941895
- 财政年份:2015
- 资助金额:$ 24万$ 24万
- 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:92782689278268
- 财政年份:2015
- 资助金额:$ 24万$ 24万
- 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:86367888636788
- 财政年份:2014
- 资助金额:$ 24万$ 24万
- 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:88119478811947
- 财政年份:2014
- 资助金额:$ 24万$ 24万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:80996808099680
- 财政年份:2010
- 资助金额:$ 24万$ 24万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:79846967984696
- 财政年份:2010
- 资助金额:$ 24万$ 24万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:85003648500364
- 财政年份:2010
- 资助金额:$ 24万$ 24万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:82985798298579
- 财政年份:2010
- 资助金额:$ 24万$ 24万
- 项目类别:
相似国自然基金
基于双靶分子识别的Dox调控的增强型IL13 CAR-T在恶性脑胶质瘤动物模型中的实验治疗研究
- 批准号:81773265
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
不同空间位置DHA甘油三酯在成长期缺乏n-3PUFA的SD大鼠体内生物利用度及脑BDNF基因调节研究
- 批准号:81602845
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
得克隆异构体在斑马鱼脑和肝脏中的生物应答及蛋白表达谱比较研究
- 批准号:41201521
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于动物机器人的植入式专用芯片设计与实验研究
- 批准号:61203370
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于动物实验的脑-机接口技术研究中枢神经活动与行为关联性研究
- 批准号:30570433
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:1071220210712202
- 财政年份:2023
- 资助金额:$ 24万$ 24万
- 项目类别:
Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
- 批准号:1073854510738545
- 财政年份:2023
- 资助金额:$ 24万$ 24万
- 项目类别:
Spinal Neuromodulation to Promote Physiologic and Molecular Plasticity in theInjured Spinal Cord
脊髓神经调节促进受损脊髓的生理和分子可塑性
- 批准号:1080572610805726
- 财政年份:2023
- 资助金额:$ 24万$ 24万
- 项目类别:
Cellular Mechanisms of State-Dependent Processing in Visual Cortex
视觉皮层状态相关处理的细胞机制
- 批准号:1073638710736387
- 财政年份:2023
- 资助金额:$ 24万$ 24万
- 项目类别: