Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
基本信息
- 批准号:8811947
- 负责人:
- 金额:$ 18.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Electric stimulation of cells and tissues is the basis of diverse medical treatments. However, stimulation of deep structures is usually invasive and relies on electrodes that are inserted or permanently implanted into the body. Transcranial magnetic stimulation (TMS) is an example of a non-invasive technology, but its penetration depth and precision are limited. Thus far, deep-penetrating but non-invasive electrostimulation has not been possible. However, recent developments in picosecond pulse technology offer an opportunity to overcome physical limitations and to deliver electric stimuli deep into the human body without using electrodes. We propose to employ intense picosecond-duration electric pulses (psEP) as a substitute for conventional electric stimulation with longer (micro- and millisecond) pulses. Instead of electrodes, psEP can be delivered by ultrawideband antennas in the form of electromagnetic waves, and focused at a depth in the human body without insertion of electrodes. Computer simulations predict significantly deeper penetration and better focusing of 200-ps pulses in comparison with TMS. Also, we have assembled and tested a prototype of an in vitro psEP exposure system and, for the first time, were able to demonstrate that 200-ps EP can indeed evoke action potentials in cultured neurons. This interdisciplinary project combines an engineering effort to develop and characterize psEP exposure systems with biological analyses of the efficiency and safety of electrostimulation by psEP. Specifically, this
project consists of five Aims intended to 1) develop a microscopy- and patch clamp- compatible system for psEP studies in vitro, 2) perform high-resolution computer simulations of psEP delivery in a realistic human head model, 3) quantify electrostimulation parameters in vitro for single pulses and trains of 200-ps pulses, 4) analyze Ca2+ dynamics in psEP-treated excitable and non-excitable cells, and 5) determine the safety margin between stimulatory effects and cell damage. This study will provide guidance for engineering of a high voltage picosecond pulser and antenna for deep-brain stimulation. It will also lay the ground for first in vivo trials of no-invasive psEP electrostimulation.
描述(由申请人提供):细胞和组织的电刺激是不同医疗治疗的基础。 但是,对深结构的刺激通常是侵入性的,并且依赖于被插入或永久植入体内的电极。 经颅磁刺激(TMS)是非侵入技术的一个例子,但其穿透深度和精度受到限制。 到目前为止,不可能进行深度渗透但无创静脉刺激。 但是,皮秒脉冲技术的最新发展为克服物理局限性并在不使用电极的情况下将电刺激深入到人体深处。 我们建议采用强烈的皮秒次尿电脉冲(PSEP)作为较长(微和毫秒)脉冲的常规电刺激的替代品。 PSSEP代替电极,可以通过电磁波的形式通过超级带天线传递,并在不插入电极的情况下聚焦在人体的深度上。 与TMS相比,计算机模拟预测了更深的渗透和更好地关注200-PS脉冲。 同样,我们已经组装并测试了体外PSEP暴露系统的原型,并且首次能够证明200-ps EP确实可以唤起培养的神经元中的动作电位。 这个跨学科的项目结合了工程学的努力,以开发和表征PSEP暴露系统以及PSEP效率和安全性的生物学分析。 具体来说,这是
project consists of five Aims intended to 1) develop a microscopy- and patch clamp- compatible system for psEP studies in vitro, 2) perform high-resolution computer simulations of psEP delivery in a realistic human head model, 3) quantify electrostimulation parameters in vitro for single pulses and trains of 200-ps pulses, 4) analyze Ca2+ dynamics in psEP-treated excitable and non-excitable cells, and 5)确定刺激效应和细胞损伤之间的安全余量。 这项研究将为高压皮秒脉冲器和天线进行工程提供指导,以进行深度脑刺激。 它还将为无创PSEP电刺激的首次体内试验奠定基础。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A subnanosecond electric pulse exposure system for biological cells.
- DOI:10.1007/s11517-016-1516-7
- 发表时间:2017-07
- 期刊:
- 影响因子:3.2
- 作者:Xiao S;Semenov I;Petrella R;Pakhomov AG;Schoenbach KH
- 通讯作者:Schoenbach KH
3D bioprinter applied picosecond pulsed electric fields for targeted manipulation of proliferation and lineage specific gene expression in neural stem cells.
- DOI:10.1088/1741-2552/aac8ec
- 发表时间:2018-10
- 期刊:
- 影响因子:4
- 作者:Petrella RA;Mollica PA;Zamponi M;Reid JA;Xiao S;Bruno RD;Sachs PC
- 通讯作者:Sachs PC
A Dielectric Rod Antenna for Picosecond Pulse Stimulation of Neurological Tissue.
- DOI:10.1109/tps.2016.2537213
- 发表时间:2016-04
- 期刊:
- 影响因子:0
- 作者:Petrella RA;Schoenbach KH;Xiao S
- 通讯作者:Xiao S
Picosecond and Terahertz Perturbation of Interfacial Water and Electropermeabilization of Biological Membranes.
- DOI:10.1007/s00232-015-9788-7
- 发表时间:2015-10
- 期刊:
- 影响因子:0
- 作者:Vernier PT;Levine ZA;Ho MC;Xiao S;Semenov I;Pakhomov AG
- 通讯作者:Pakhomov AG
Electroporation by subnanosecond pulses.
- DOI:10.1016/j.bbrep.2016.05.002
- 发表时间:2016-07
- 期刊:
- 影响因子:2.7
- 作者:Semenov I;Xiao S;Pakhomov AG
- 通讯作者:Pakhomov AG
共 5 条
- 1
Andrei G Pakhomov的其他基金
Next Generation Temporal Interference Stimulation for Non-Invasive Neuromodulation
用于非侵入性神经调节的下一代时间干扰刺激
- 批准号:1061548510615485
- 财政年份:2023
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:1066976710669767
- 财政年份:2022
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:1051545910515459
- 财政年份:2022
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:89418958941895
- 财政年份:2015
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:92782689278268
- 财政年份:2015
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:86367888636788
- 财政年份:2014
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:80996808099680
- 财政年份:2010
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:79846967984696
- 财政年份:2010
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:85003648500364
- 财政年份:2010
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:82985798298579
- 财政年份:2010
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:1075383610753836
- 财政年份:2023
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
All holographic two-photon electrophysiology
全全息双光子电生理学
- 批准号:1061693710616937
- 财政年份:2023
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:1067979610679796
- 财政年份:2023
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:1056778810567788
- 财政年份:2023
- 资助金额:$ 18.26万$ 18.26万
- 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:1063491110634911
- 财政年份:2023
- 资助金额:$ 18.26万$ 18.26万
- 项目类别: