Spinal Neuromodulation to Promote Physiologic and Molecular Plasticity in theInjured Spinal Cord
脊髓神经调节促进受损脊髓的生理和分子可塑性
基本信息
- 批准号:10805726
- 负责人:
- 金额:$ 46.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnatomyAnimal ExperimentsAnimalsAreaBiologyCervicalCervical spinal cord injuryCervical spinal cord structureChronicClinicalClinical DataClinical ResearchContusionsDataDevicesDorsalDoseEffectivenessElectric StimulationElectrodesEngineeringFamilyFiberForelimbFutureGene ExpressionGenetic TranscriptionHourInformaticsInjuryInvestigationLesionLocomotionMapsMethodsModelingMolecularMotorMuscleNeuronal PlasticityParalysedPathway interactionsPatientsPatternPerformancePersonsPhysiologicalPhysiologyPositioning AttributePublishingQuadriplegiaQuality of lifeRattusRecoveryRecovery of FunctionRehabilitation therapyReportingResearchRetinal blind spotRodentRoleSensorySiteSpeedSpinalSpinal CordSpinal cord injuryStrokeSurfaceTestingTimeTrainingTraumatic Brain InjuryUpper ExtremityVertebral columnWalkingWorkcandidate identificationcentral pattern generatorclinically relevantcostexperienceexperimental studyfunctional improvementfunctional plasticitygene regulatory networkhand rehabilitationimprovedinnovationinsightinterestintraspinal microstimulationmotor recoverynerve injuryneuralneuroinflammationneuroregulationnovelnovel strategiespre-clinicalrestorationtranscriptomics
项目摘要
Abstract
There is growing interest in the use of electrical stimulation to promote the recovery of sensorimotor and
autonomic function after neural injury. Previous research from our lab and others has demonstrated that
stimulation of spinal lumbar segments activates central pattern generators, which, in turn, facilitates standing
and walking. However, while there is extensive animal, pre-clinical, and clinical data examining the impact of
lumbar stimulation, studies that apply neuromodulation to the cervical spinal cord for upper limb are very limited.
Here, we propose that fundamental blind spots exist in the field of neuromodulation for upper limb, including
where to stimulate anatomically, how to dose and, especially, mechanisms of action. The Horner lab has
developed a clinically relevant rat model of cervical spinal cord injury and engineered a self-contained epidural
stimulation device that can be deployed in freely behaving rats to stimulate sensorimotor circuitry from multiple
surfaces of the spinal cord. Hence, we are well positioned to test critically important hypotheses on the role of
cervical stimulation in the restoration of upper limb function. We present exciting preliminary data demonstrating
that epidural stimulation of the cervical spinal cord improves forelimb function. The rationale for the proposed
research is that the site of epidural stimulation provides unique access to motor circuitry. We hypothesize that
ventral positioning of electrodes (VSS) will provide access to stimulate motor circuitry at the site of
lesion that are inaccessible from the more common dorsal approach (DSS). Further, we propose that
VSS will produce novel mechanisms of function plasticity that can amplify recovery when combined with
DSS. To test this hypothesis, we propose the following aims: Aim 1: Determine acute molecular and physiological
mechanisms of VSS when applied to subacute cervical spinal cord injury. Aim 2: Establish the functional impact
of site of stimulation and rehabilitative training on recovery from early chronic cervical spinal cord injury. Aim 3:
Establish the synergistic effects of combined VSS and DSS after cervical spinal cord injury. These studies will
explore an exciting new approach to promote neural recovery of the upper limb, an area of research that has
had limited investigation, but remains a primary concern for the patient. Our approach will rigorously establish
the physiological and functional effects of the site of stimulation on the molecular and physiological mechanisms
of upper limb plasticity.
抽象的
人们越来越关注使用电刺激来促进感觉运动和感觉运动的恢复
神经损伤后的自主神经功能。我们实验室和其他人之前的研究表明
刺激脊柱腰段会激活中央模式发生器,从而促进站立
和步行。然而,虽然有大量的动物、临床前和临床数据检验了
腰部刺激,将神经调节应用于上肢颈脊髓的研究非常有限。
在这里,我们提出上肢神经调节领域存在基本盲点,包括
在哪里进行解剖学刺激、如何剂量,尤其是作用机制。霍纳实验室有
开发了临床相关的颈脊髓损伤大鼠模型,并设计了独立的硬膜外麻醉
刺激装置可以部署在自由行为的大鼠身上,以刺激多个感觉运动电路
脊髓表面。因此,我们有能力测试关于以下角色的至关重要的假设:
颈部刺激恢复上肢功能。我们提供令人兴奋的初步数据证明
颈脊髓的硬膜外刺激可改善前肢功能。拟议的理由
研究表明,硬膜外刺激部位提供了进入运动回路的独特途径。我们假设
腹侧定位电极(VSS)将提供刺激部位运动电路的通道
通过更常见的背侧入路 (DSS) 无法到达的病变。此外,我们建议
VSS 将产生新的功能可塑性机制,与
决策支持系统。为了检验这一假设,我们提出以下目标: 目标 1:确定急性分子和生理学
VSS应用于亚急性颈脊髓损伤的机制。目标 2:确定功能影响
刺激部位和康复训练对早期慢性颈脊髓损伤恢复的影响。目标 3:
建立颈髓损伤后联合 VSS 和 DSS 的协同效应。这些研究将
探索一种令人兴奋的新方法来促进上肢神经恢复,这是一个研究领域
调查有限,但仍然是患者主要关心的问题。我们的方法将严格建立
刺激部位对分子和生理机制的生理和功能影响
上肢可塑性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip J Horner其他文献
Philip J Horner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip J Horner', 18)}}的其他基金
Training in Neural Control of organ Degeneration and Regeneration (NeuralCODR)
器官退化和再生的神经控制培训(NeuralCODR)
- 批准号:
10620833 - 财政年份:2022
- 资助金额:
$ 46.94万 - 项目类别:
Patricia Levy Zusman International Workshop on Neuroregeneration (Zusman Workshop)
Patricia Levy Zusman 神经再生国际研讨会(Zusman 研讨会)
- 批准号:
10607404 - 财政年份:2022
- 资助金额:
$ 46.94万 - 项目类别:
Training in Neural Control of organ Degeneration and Regeneration (NeuralCODR)
器官退化和再生的神经控制培训(NeuralCODR)
- 批准号:
10410250 - 财政年份:2022
- 资助金额:
$ 46.94万 - 项目类别:
A versatile reporter for visualization of myelin plasticity in the genetically modified rat
一种多功能报告基因,用于可视化转基因大鼠的髓磷脂可塑性
- 批准号:
10303241 - 财政年份:2021
- 资助金额:
$ 46.94万 - 项目类别:
CNS Neuroregeneration strategies: Discovery and Implementation
中枢神经系统神经再生策略:发现和实施
- 批准号:
9332048 - 财政年份:2017
- 资助金额:
$ 46.94万 - 项目类别:
Astrocyte-specific ligand discovery by phage display
通过噬菌体展示发现星形胶质细胞特异性配体
- 批准号:
8995701 - 财政年份:2015
- 资助金额:
$ 46.94万 - 项目类别:
Metabolic requirements of adult neural stem cells
成体神经干细胞的代谢需求
- 批准号:
8068094 - 财政年份:2011
- 资助金额:
$ 46.94万 - 项目类别:
Metabolic requirements of adult neural stem cells
成体神经干细胞的代谢需求
- 批准号:
8321500 - 财政年份:2011
- 资助金额:
$ 46.94万 - 项目类别:
Combined stem cell transplantation and targeted microstimulation to direct the fo
联合干细胞移植和定向微刺激来指导
- 批准号:
8288742 - 财政年份:2009
- 资助金额:
$ 46.94万 - 项目类别:
Ultrasound-aided gene transfer to direct cortical neurogenesis after brain injury
超声辅助基因转移至脑损伤后直接皮质神经发生
- 批准号:
8722168 - 财政年份:2009
- 资助金额:
$ 46.94万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The natural release of unusual peptidoglycan fragments drives persistent Lyme disease symptoms in susceptible hosts
异常肽聚糖片段的自然释放导致易感宿主持续出现莱姆病症状
- 批准号:
10736544 - 财政年份:2023
- 资助金额:
$ 46.94万 - 项目类别:
Targeting mitochondria-derived reactive oxygen species as a therapy for combined pre- and post-capillary pulmonary hypertension
靶向线粒体衍生的活性氧作为治疗毛细血管前和后联合肺动脉高压的方法
- 批准号:
10535666 - 财政年份:2022
- 资助金额:
$ 46.94万 - 项目类别:
Modulation of Cerebellar Activity by Electrical and Focused Ultrasound Stimulation
通过电刺激和聚焦超声刺激调节小脑活动
- 批准号:
10429656 - 财政年份:2022
- 资助金额:
$ 46.94万 - 项目类别:
Lasting Impacts: Dynamic, Fully Natural Bioprinted 3D Human Neurovascular Biomimetic Model to Study Traumatic Brain Injury Pathophysiology
持久影响:用于研究创伤性脑损伤病理生理学的动态、完全自然的生物打印 3D 人体神经血管仿生模型
- 批准号:
10916751 - 财政年份:2021
- 资助金额:
$ 46.94万 - 项目类别: