The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
基本信息
- 批准号:10613420
- 负责人:
- 金额:$ 84.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Bacterial RNABiochemicalBiologicalBiologyBiophysicsCatalytic RNACell physiologyComplexComputer SimulationConsensusCouplingCryoelectron MicroscopyDNA-Directed RNA PolymeraseDyesElectron MicroscopyElectrostaticsEncapsulatedEnzymatic BiochemistryFluorescence MicroscopyFluorescent ProbesGene ExpressionGenesGeneticGenetic TranscriptionGoalsIndividualKineticsLengthLifeLigandsLightMessenger RNAOutcomeProcessRNARNA FoldingRNA SplicingRNA analysisRNA chemical synthesisResearchSiteSpliceosomesStructureStructure-Activity RelationshipThermodynamicsThinkingTimeTranscriptTranscriptional RegulationTranslationsUntranslated RNAgene functionmolecular dynamicsnanomachinenanoscalesingle moleculesingle-molecule FRETultra high resolution
项目摘要
TITLE:
The RNA nanomachines of gene expression dissected at the single molecule level
ABSTRACT:
Over two decades, the Walter lab has contributed to the RNA field by building a broad research portfolio focused
on dissecting the mechanisms of the nanoscale RNA machines of gene expression – ranging from small viroidal
ribozymes and bacterial riboswitches to the eukaryotic spliceosome – by single molecule fluorescence
microscopy. Leveraging this expertise, the two long-term goals of the current proposal are to: 1.) Apply our
established mechanistic enzymology approaches to an ever broader set of RNAs involved in regulating
transcription, translation and splicing, seizing the opportunities arising from the continuing discoveries of new
functional RNAs. 2.) Push the limits of our approaches to be able to probe increasingly complex biological
contexts and mechanisms since unexpected discoveries – as we found – often await where individual RNA
nanomachines interact. In pursuit of these goals, we will address the overarching hypothesis that dynamic RNA
structures are a major determinant of the outcomes of gene expression, often in ways that have been overlooked
by a field that historically was rooted in genetics, where genes regularly were drawn as rectangular boxes, and
function commonly was thought of as dictated by sequence rather than structure. Such thinking is countered by,
for example, the fact that nascent RNA structure has a significant impact on transcription in the form of regulatory
riboswitches embedded near the 5' ends of bacterial mRNAs and of transcription terminator hairpins at the 3'
end. Conversely, the time-ordered, 5'-to-3' directional RNA synthesis of transcription often yields kinetically
trapped RNA folds distinct from the most thermodynamically stable structure of a refolded full-length transcript.
Encapsulating the power of our pursuit, we recently combined single-molecule, biochemical and computational
simulation approaches to show that transcriptional pausing at a site immediately downstream of a riboswitch
requires a ligand-free pseudoknot in the nascent RNA, a precisely spaced consensus pause sequence, and
electrostatic and steric interactions with the exit channel of bacterial RNA polymerase. We posit that many more
examples of such intimate structural and kinetic coupling between RNA folding and gene expression remain to
be discovered, leading to the exquisite regulatory control and kinetic proofreading enabling all life processes. To
reveal more such couplings, we will probe the dynamics of carefully purified transcriptional and translational
riboswitch-containing, as well as spliceosomal, gene expression complexes using a tailored combination of
single molecule fluorescence resonance energy transfer (smFRET), Single Molecule Kinetic Analysis of RNA
Transient Structure (SiM-KARTS) based on super-resolved co-localization of RNA targets and fluorescent
probes, cryo-electron microscopy – augmented by a proposed dye-based single molecule correlative light
electron microscopy (smCLEM) – and, where appropriate, molecular dynamics simulations. We anticipate that
these studies have the potential to transform our understanding of RNA structure-function relationships in
general, and of how RNA structure is governing the function of cellular gene expression machines in particular.
标题:
在单分子水平上剖析的基因表达的RNA纳米机器
抽象的:
二十年来,沃尔特实验室通过建立以广泛的研究组合为重点为RNA领域做出了贡献
解剖基因表达的纳米级RNA机的机理 - 范围从小病毒
核酶和细菌核糖开关到真核剪接体 - 单分子荧光
显微镜。利用这一专业知识,当前建议的两个长期目标是:1。)应用我们
既定的机械酶学方法
转录,翻译和拼接,抓住了持续发现的新机会
功能性RNA。 2.)推动我们的方法的极限,以探测日益复杂的生物学
上下文和机制以来我们发现的意外发现,通常会等待单个RNA的位置
纳米机器相互作用。为了实现这些目标,我们将解决动态RNA的总体假设
结构是基因表达结果的主要确定者,通常以被忽视的方式
通过历史上植根于遗传学的领域,经常将基因作为矩形盒子绘制,并且
函数通常被认为是由序列而不是结构决定的。这样的思想是由
例如,新生的RNA结构对调节形式的转录具有重大影响
在细菌mRNA的5端和3'的转录终结器发夹附近嵌入的核糖开关
结尾。相反,时间订购的5'至3'定向RNA的转录合成通常会产生
捕获的RNA折叠与重折叠的全长转录本的最热力学稳定结构不同。
封装我们追求的力量,我们最近将单分子,生化和计算结合在一起
模拟方法以表明在核糖开关下游的站点上的转录暂停
需要在新生的RNA中使用无配体的伪not,一个精确的共识暂停序列,并且
静电和空间与细菌RNA聚合酶出口通道的相互作用。我们指出更多
RNA折叠和基因表达之间这种亲密的结构和动力学耦合的例子
被发现,导致独家的监管控制和动力学校对,从而实现所有生命过程。到
揭示更多此类耦合,我们将探测精心纯化的转录和翻译的动力学
使用量身定制的组合,含核糖开关的基因表达复合物以及剪接的基因表达复合物
单分子荧光共振能传递(SMFRET),RNA的单分子动力学分析
基于RNA靶标和荧光的超级共定位的瞬态结构(SIM卡丁车)
探针,冷冻电子显微镜 - 由提出的基于染料的单分子相关光增强
电子显微镜(SMCLEM) - 以及适当的分子动力学模拟。我们预料到这一点
这些研究有可能改变我们对RNA结构功能关系的理解
一般以及RNA结构如何管理细胞基因表达机的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NILS G WALTER其他文献
NILS G WALTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NILS G WALTER', 18)}}的其他基金
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
9920170 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Administrative Supplement for a Cytosurge FluidFM OMNIUM instrument: The RNA nanomachines of the gene expression machinery dissected at the single molecule level
Cytosurge FluidFM OMNIUM 仪器的行政补充:在单分子水平上解剖的基因表达机器的 RNA 纳米机器
- 批准号:
10797186 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
10390477 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Administrative Supplement for a Turnkey Fluorescence Microscope: Riboswitch mechanism unraveled at the single molecule level
交钥匙荧光显微镜的管理补充:在单分子水平上揭示核糖开关机制
- 批准号:
9894327 - 财政年份:2019
- 资助金额:
$ 84.78万 - 项目类别:
Single-molecule counting of cancer biomarker miRNAs in human biofluids
人体生物体液中癌症生物标志物 miRNA 的单分子计数
- 批准号:
9233284 - 财政年份:2017
- 资助金额:
$ 84.78万 - 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
- 批准号:
9357619 - 财政年份:2016
- 资助金额:
$ 84.78万 - 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
- 批准号:
9079585 - 财政年份:2016
- 资助金额:
$ 84.78万 - 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
- 批准号:
8641463 - 财政年份:2013
- 资助金额:
$ 84.78万 - 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
- 批准号:
8785654 - 财政年份:2013
- 资助金额:
$ 84.78万 - 项目类别:
Spliceosome Mechanism Dissected at the Single Molecule Level
单分子水平剖析剪接体机制
- 批准号:
8415518 - 财政年份:2012
- 资助金额:
$ 84.78万 - 项目类别:
相似国自然基金
藻类微生物燃料电池CO2藻菌协同生化转化及阴极原位耦合光催化捕获
- 批准号:52306222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SPION与BMP-2磁生化信号耦合靶向新生骨精准改善成骨微环境的研究
- 批准号:82370930
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
- 批准号:42371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
入核效应蛋白SidW的生化及生物学功能
- 批准号:32370196
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
A co-infection model for papillomavirus associated infections and cancers
乳头瘤病毒相关感染和癌症的共感染模型
- 批准号:
10667710 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别:
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别:
Molecular mechanisms of memory formation and tolerance in CRISPR-Cas systems
CRISPR-Cas系统中记忆形成和耐受的分子机制
- 批准号:
10570544 - 财政年份:2023
- 资助金额:
$ 84.78万 - 项目类别: