EHR-based Genomic Risk Assessment and Management for Diverse Populations
基于 EHR 的不同人群基因组风险评估和管理
基本信息
- 批准号:10611345
- 负责人:
- 金额:$ 150.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedAdoptionAll of Us Research ProgramBehaviorBiomedical ResearchChronic DiseaseClinicalClinical DataClinical ManagementClinical ResearchCollaborationsColon CarcinomaCommunicationCommunitiesComplexCoronary ArteriosclerosisCost AnalysisDataDevelopmentDiagnosticDiseaseEducational ModelsElectronic Health RecordElectronic Medical Records and Genomics NetworkElectronicsEngineeringEnsureEthnic PopulationEuropeanEuropean ancestryExtensible Markup LanguageFamilyFocus GroupsFundingGeneticGenetic RiskGenetic StructuresGenomic medicineGenomicsGoalsHealthHealth StatusHeightHospitalsIndividualInformaticsInstitutional Review BoardsKidneyKnowledgeLearningLinkMeasuresMedical GeneticsMedical centerMethodsNational Center for Advancing Translational SciencesNatural Language ProcessingNew York CityParticipantPatient PreferencesPatient RecruitmentsPatientsPerformancePhenotypePlug-inPopulation HeterogeneityPositioning AttributePrecision Medicine InitiativePrevention strategyPrimary PreventionProviderPublic HealthRandomized, Controlled TrialsRecommendationRecording of previous eventsReportingReproducibilityResearchRiskRisk AssessmentRisk EstimateRisk FactorsRisk ManagementRisk ReductionStratificationStructureSystems BiologyTechnologyTestingTextUniversitiesVariantWashingtonclinical research siteclinical riskcommunity engagementcost effectivenessdata modelingdata sharingdesigndiscrete datadiverse dataethical, legal, and social implicationethnic diversityexperiencegenetic risk assessmentgenetic testinggenetic variantgenome wide association studygenome-widegenomic datagenomic predictorshealth disparityhigh riskimprovedindividual patientinteroperabilityliteracymalignant breast neoplasmmathematical abilitymedical specialtiesmedically underservedmemberpatient orientedphenotyping algorithmpolygenic risk scoreportabilityprecision medicineprogramsprospectivepublic health relevanceracial diversityracial populationrare variantrecruitrisk perceptionrisk predictionscreeningsocioeconomicstailored health caretooltraittrial designunderserved communityuser centered designvalidation studies
项目摘要
PROJECT SUMMARY/ABSTRACT
Recently, large-scale genome-wide association studies (GWAS) provide evidence for a substantial polygenic
contribution to the risk of many common complex diseases. However, most of these studies were performed in
Europeans, and new data and methods are necessary to tailor polygenic risk prediction to non-Europeans, to
ensure that genomic stratification does not further exacerbate health disparities. The overarching goal of the
eMERGE-IV network is to leverage genetic and electronic health record (EHR) data for diverse populations to
design, validate and test the clinical utility of ancestry-tailored polygenic risk scores for common diseases. As a
current member of the eMERGE network, Columbia University has significantly advanced its goals, having
recruited over 2,500 diverse patients for sequencing and return of actionable findings, leading the effort to
transition the network to the OMOP Common Data Model to improve the efficiency, accuracy, reproducibility and
portability of electronic phenotypes, and contributing a widely-adopted XML parser for structuring genetic test
reports. Since our last application, the Columbia Precision Medicine Initiative has also grown and now includes
participation in several national initiatives, such as the All-of-Us program, in which we have demonstrated our
ability to rapidly recruit patients under-represented in biomedical research. Our scientific expertise combined
with our strong tradition of patient-centered research and community engagement in a socioeconomically,
racially, and ethnically diverse community of Northern Manhattan, positions us to successfully contribute as the
Enhanced Diversity Clinical Site of the eEMERGE-IV network. We will leverage our prior experience with
eMERGE, scientific expertise, and knowledge gained from participation in other national precision medicine
initiatives to develop, optimize, validate and disseminate ancestry-tailored genomic risk assessment and clinical
management tools. In Aim 1, we will continue to advance electronic phenotyping by contributing sharable natural
language processing tools for converting clinical text into OMOP-based discrete data and facilitating phenotype
interoperability. In Aim 2, we will develop and optimize accurate ancestry-tailored genome-wide polygenic
predictors, integrate them with clinical risk predictions, and test their performance in diverse populations. In Aim
3, we will investigate ELSI issues related to the return of health risk predictions to diverse patients by ascertaining
patients’, clinicians’, and IRB members’ views through focus groups. In Aim 4, we will develop portable EHR
plug-ins to facilitate prospective risk communication and management using integrated genomic data, family
history, and clinical data. In Aim 5, we will recruit 2,500 diverse patients and use a randomized controlled trial
design to assess the impact of return of genomic prediction on the accuracy of risk perception, health
surveillance, and risk reducing measures. This proposal will address major knowledge gaps in genetic risk
assessment for diverse populations, and the solutions and knowledge gained will be broadly applicable to
precision medicine for common complex traits across many clinical specialties.
项目概要/摘要
最近,大规模全基因组关联研究(GWAS)为大量多基因相关性提供了证据。
然而,这些研究大多数是在2017年进行的。
欧洲人需要新的数据和方法来针对非欧洲人定制多基因风险预测,以
确保基因组分层不会进一步加剧健康差异。
eMERGE-IV 网络将利用不同人群的遗传和电子健康记录 (EHR) 数据来
设计、验证和测试针对常见疾病的血统定制多基因风险评分的临床效用。
哥伦比亚大学是 eMERGE 网络的当前成员,已显着推进其目标,
招募了超过 2,500 名不同的患者进行测序并返回可操作的结果,从而努力
将网络过渡到 OMOP 通用数据模型,以提高效率、准确性、再现性和
电子表型的可移植性,并为构建基因测试提供广泛采用的 XML 解析器
自从我们上次申请以来,哥伦比亚精准医学计划也不断发展,现在包括在内。
参与多项国家举措,例如“全民计划”,我们在该计划中展示了我们的
能够快速招募生物医学研究中代表性不足的患者。
凭借我们以患者为中心的研究和社区参与社会经济的悠久传统,
曼哈顿北部的种族和民族多元化社区使我们能够成功地为
eEMERGE-IV 网络的增强多样性临床站点我们将利用我们之前的经验。
eMERGE、科学专业知识以及通过参与其他国家精准医学获得的知识
开发、优化、验证和传播针对血统的基因组风险评估和临床的举措
在目标 1 中,我们将通过贡献可共享的自然物质继续推进电子表型分析。
用于将临床文本转换为基于 OMOP 的离散数据并促进表型的语言处理工具
在目标 2 中,我们将开发和优化精确的祖先定制的全基因组多基因。
预测因子,将其与临床风险预测相结合,并测试其在不同人群中的表现。
3,我们将通过确定来调查与向不同患者返回健康风险预测相关的 ELSI 问题
通过焦点小组听取患者、新移民和 IRB 成员的意见 在目标 4 中,我们将开发便携式 EHR。
使用集成基因组数据、家族数据促进前瞻性风险沟通和管理的插件
在目标 5 中,我们将招募 2,500 名不同的患者并使用随机对照试验。
设计评估基因组预测的回归对风险感知、健康的准确性的影响
该提案将解决遗传风险方面的主要知识差距。
对不同人群进行评估,所获得的解决方案和知识将广泛适用于
针对许多临床专业的常见复杂特征的精准医学。
项目成果
期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Big Data Reveal Insights into Alopecia Areata Comorbidities.
- DOI:10.1016/j.jisp.2017.10.006
- 发表时间:2018-01-01
- 期刊:
- 影响因子:0
- 作者:Lim, Chean Ping;Severin, Rachel K;Petukhova, Lynn
- 通讯作者:Petukhova, Lynn
Studying the impact of translational genomic research: Lessons from eMERGE.
- DOI:10.1016/j.ajhg.2023.05.011
- 发表时间:2023-07-06
- 期刊:
- 影响因子:9.8
- 作者:
- 通讯作者:
Association of Genetic Risk of Obesity with Postoperative Complications Using Mendelian Randomization.
使用孟德尔随机化研究肥胖遗传风险与术后并发症的关联。
- DOI:10.1007/s00268-019-05202-9
- 发表时间:2020
- 期刊:
- 影响因子:2.6
- 作者:Robinson,JamieR;Carroll,RobertJ;Bastarache,Lisa;Chen,Qingxia;Mou,Zongyang;Wei,Wei-Qi;Connolly,JohnJ;Mentch,Frank;Sleiman,Patrick;Crane,PaulK;Hebbring,ScottJ;Stanaway,IanB;Crosslin,DavidR;Gordon,AdamS;Rosenthal,Elisabet
- 通讯作者:Rosenthal,Elisabet
Under-specification as the source of ambiguity and vagueness in narrative phenotype algorithm definitions.
- DOI:10.1186/s12911-022-01759-z
- 发表时间:2022-01-28
- 期刊:
- 影响因子:3.5
- 作者:Yu J;Pacheco JA;Ghosh AS;Luo Y;Weng C;Shang N;Benoit B;Carrell DS;Carroll RJ;Dikilitas O;Freimuth RR;Gainer VS;Hakonarson H;Hripcsak G;Kullo IJ;Mentch F;Murphy SN;Peissig PL;Ramirez AH;Walton N;Wei WQ;Rasmussen LV
- 通讯作者:Rasmussen LV
Impact of cervical effacement and fetal station on progress during the first stage of labor: a biexponential model.
宫颈消失和胎儿位置对第一产程进展的影响:双指数模型。
- DOI:10.1055/s-0033-1359721
- 发表时间:2014
- 期刊:
- 影响因子:2
- 作者:Quincy,MariaME;Weng,Chunhua;Shafer,StevenL;Smiley,RichardM;Flood,PamelaD;Mirza,FadiG
- 通讯作者:Mirza,FadiG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wendy K Chung其他文献
Wendy K Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wendy K Chung', 18)}}的其他基金
Fair Phenotype Annotation and Genomic Reinterpretation
公平表型注释和基因组重新解释
- 批准号:
10675315 - 财政年份:2023
- 资助金额:
$ 150.13万 - 项目类别:
Prospective Genetic Risk Evaluation and Assessment (PROGRESS) in Autism
自闭症的前瞻性遗传风险评估(PROGRESS)
- 批准号:
10531728 - 财政年份:2022
- 资助金额:
$ 150.13万 - 项目类别:
Prospective Genetic Risk Evaluation and Assessment (PROGRESS) in Autism
自闭症的前瞻性遗传风险评估(PROGRESS)
- 批准号:
10698037 - 财政年份:2022
- 资助金额:
$ 150.13万 - 项目类别:
Project 1: Identifying and optimizing monogenetic risk prediction for autism in newborns
项目 1:识别和优化新生儿自闭症单基因风险预测
- 批准号:
10698081 - 财政年份:2022
- 资助金额:
$ 150.13万 - 项目类别:
Identifying and applying genetic variation relevant to clinical outcomes for individuals with congenital heart disease
识别和应用与先天性心脏病患者临床结果相关的遗传变异
- 批准号:
10028016 - 财政年份:2020
- 资助金额:
$ 150.13万 - 项目类别:
Role of the Kinesin KIF1A in Neurological Disease
驱动蛋白 KIF1A 在神经系统疾病中的作用
- 批准号:
10328907 - 财政年份:2020
- 资助金额:
$ 150.13万 - 项目类别:
Molecular Biology/Molecular Genetics (Core C)
分子生物学/分子遗传学(核心 C)
- 批准号:
9901512 - 财政年份:2020
- 资助金额:
$ 150.13万 - 项目类别:
Role of the Kinesin KIF1A in Neurological Disease
驱动蛋白 KIF1A 在神经系统疾病中的作用
- 批准号:
10543786 - 财政年份:2020
- 资助金额:
$ 150.13万 - 项目类别:
Identifying and applying genetic variation relevant to clinical outcomes for individuals with congenital heart disease
识别和应用与先天性心脏病患者临床结果相关的遗传变异
- 批准号:
10226278 - 财政年份:2020
- 资助金额:
$ 150.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 150.13万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 150.13万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 150.13万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 150.13万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 150.13万 - 项目类别: