Multidrug Resistance Mediated by P-glycoprotein
P-糖蛋白介导的多药耐药性
基本信息
- 批准号:7969762
- 负责人:
- 金额:$ 36.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ABCB1 geneABCG2 geneAccountingAcetylationAcute Lymphocytic LeukemiaAdultAffectAreaBiological AssayBrainBypassCell Culture TechniquesCell LineCellsCharacteristicsChildChildhood Acute Lymphocytic LeukemiaChromatin StructureChromosomesChromosomes, Human, Pair 7ClinicalClinical DataComplexCytotoxic agentDNA Sequence RearrangementDataDevelopmentDrug ExposureDrug resistanceDrug-sensitiveEducational process of instructingEpigenetic ProcessEtiologyEventFormalinFrequenciesFutureGastrointestinal tract structureGenbankGene RearrangementGenesGeneticGenetic TranscriptionGenomicsGoalsHERVsHistone AcetylationHomologous GeneHumanHybrid CellsImpairmentIn VitroInvestigationKnock-outKnockout MiceKnowledgeLeadLearningLocationLymphomaMediatingModelingMolecularMulti-Drug ResistanceMusNervous system structureNeuronsNonhomologous DNA End JoiningNormal tissue morphologyOralOutcomeP-GlycoproteinP-GlycoproteinsPatientsPharmaceutical PreparationsPhenotypePhysiologicalRaceRefractoryRefractory DiseaseRegulationRepetitive SequenceResearchResistanceRoleSamplingSiteSolidStructureToxic effectTranscriptTranslational ResearchUntranslated RegionsWild Type MouseWorkbasechemobrainchemotherapeutic agentchemotherapydesigneffective therapyexperiencehomologous recombinationin vivoin vivo Modelinterestleukemiamulti drug transporternovelpreventpromoterresearch studyresistance mechanismtissue fixingtumor
项目摘要
Background: In the field of multidrug resistance mediated by the multidrug transporter, P glycoprotein, which is encoded by the MDR-1 gene, our efforts have been a focus on translational research, while trying to pursue basic investigations that have the potential for future clinical correlations. Since its original description nearly 20 years ago, increased expression of P-glycoprotein (Pgp) has been frequently observed in cell culture models of multidrug resistance and in clinical samples obtained from refractory patients. But while progress has been made, the regulation of Pgp expression is not fully understood. Is MDR-1/Pgp expression in drug selected cells and refractory tumors under similar regulatory control as that in normal tissues, or drug sensitive cells? Our results suggest the answer is no. In all drug resistant cell lines derived from parental cells that do not normally express MDR-1 or express MDR-1 at low levels, the mechanisms regulating MDR-1 expression are acquired and abnormal. Expression from an unrelated, active promoter, proceeding in a normal or an aberrant direction, can control transcription. This occurs principally as a result of a gene rearrangement that leads to capture of MDR-1 by an unrelated promoter. Alternately, aberrant transcription can begin in a region 112 kb 5 prime of MDR-1. Following drug selection this region functions as a promoter. Evidence suggests that an HERV LTR is involved in this aberrant transcription and that acetylation of a nearby sequence may be an important epigenetic event in the activation of this aberrant promoter. Our research goals have been to (1) understand the molecular basis of acquired MDR-1 expression; (2) comprehend how/why these changes occur; (3) search for them in clinical samples and (4) devise strategies to reduce or prevent their occurrence. Our efforts are increasingly direct ed at understanding how normal tissue might be affected b y these agents and the extent to which they might or might not be protected by drug transporters such as P-glycoprotein and the half-transporter, ABCG2 Project Description and Plans: We have identified gene rearrangements as the mechanism responsible for the activation of MDR-1 in a large number of cell lines, and in patient samples. These rearrangements occur randomly and are characterized by the juxtaposition of a transcriptionally active gene 5 prime to MDR-1, thus avoiding disruption of MDR-1 structure. These gene rearrangements leading to activation of MDR-1 represent a mechanism of resistance with the following characteristics: (i) the rearrangement is an acquired phenotype, not detected in parental cells, and (ii) the rearrangement provides a mechanism for activation of MDR-1 in cells that do not express MDR-1 or express MDR-1 at very low levels; this is not a mechanism for over-expression of MDR-1 in a cell that expresses MDR-1 endogenously at significant levels. Additional characteristics include the following: (1) The majority of MDR-1 transcripts in these cells are hybrid mRNAs. (2) Activation occurs by juxtaposing an active promoter 5 prime to MDR-1, and initiating transcription at this promoter. Expression of the non-MDR-1 gene can be readily detected in a variety of cells suggesting the non-MDR-1 gene is constitutively active and has widespread expression. Furthermore, where information has been available for the non-MDR-1 sequences, the residues fused to MDR-1 have been from the 5 prime UTR of the respective genes (3) The rearrangements appear to occur randomly and involve genes found in chromosome 7 and in chromosomes other than 7. The sequences within 7 are found either centromeric or telomeric of MDR-1 (i.e. inversions occur). The breakpoints have been characterized in eight drug resistant cell lines. Rearrangements occurred as a result of either homologous recombination or non-homologous end joining. While the breakpoints appear to be unique, Alu repeats or other commonly occurring repetitive sequences appear to have been involved in the majority of rearrangements. In addition to gene rearrangements that lead to the capture of MDR-1, we have identified a second mechanism of acquired MDR-1 expression: Aberrant transcription from an aberrant promoter located 112 kb 5 prime to the normal start of MDR-1. Early studies examining MDR-1/Pgp expression in cell culture concluded MDR-1 expression was under the control of two promoters designated the upstream and downstream promoters. We now recognize the downstream promoter to be the normal MDR1 promoter. Transcripts containing additional sequences 5 prime of the downstream promoter start residues were assumed to originate at the putative upstream promoter. We discovered that in many of these cases the upstream promoter is actually the promoter of another unrelated gene as described above. However, in several drug resistant cell lines 5 prime RACE found similar 5 prime sequences proximal to residue -194 indicating transcripts in these cell lines shared a similar start site. A GENBANK search found that the 251 bp shared by these resistant cell lines were 112,276 bp 5 prime of the normal start site of MDR-1 transcription. Expression of the 251 bp could not be detected in any parental cell with the exception of ZR-75B cells, nor in 15 normal tissues suggesting expression does not occur under normal circumstances. Further studies have shown that these transcripts are aberrant and that their expression is regulated by nearby genomic sequences that may include a human endogenous retroviral LTR. Expression of this LTR occurs in all cells. However, following drug selection, MDR-1 transcripts begin near this retroviral LTR with transcription in the direction opposite of the usual LTR transcription. Because expression of these aberrant MDR-1 transcripts is found only in drug-resistant cell lines, we conclude that the development of drug resistance or the attendant drug exposure has a role in the activation of this phenomenon. We have also identified in our cell lines and in collaborative studies evidence that some of the transcripts originating at this aberrant promoter may be starting at this location because of changes in chromatin structure in this region. Evidence for this includes data showing increased histone acetylation in this region in drug resistant cells. Our current efforts are directed at further understanding this phenomenon and at developing an assay that can assess this accurately in patient samples, with an emphasis on developing an assay that can be performed using formalin fixed tissue. We have also been investigating the role of these transporters in affording the brain protection from chemotherapeutic agents,. Driven in part by the recognition that as we develop more and more agents to be administered orally, we are developing agents that are likely to bypass the mechanisms that protect the brain and confer its status as a sanctuary, since many of the same transporters that protect line the GI tract, and drugs must be designed to bypass them if they are to be administered orally. We are conducting studies to hopefully understand the mechanisms that protect the brain and what might be the consequences of bypassing these barriers. We are doing this by both examining in vitro and in vivo models and through an exhaustive search of existing clinical data with the goal of further understanding this problem.
背景:在由MDR-1基因编码的多药转运蛋白P糖蛋白介导的多药耐药领域,我们的工作重点是转化研究,同时努力开展具有未来临床潜力的基础研究。相关性。自从近 20 年前首次被描述以来,在多药耐药细胞培养模型和从难治性患者获得的临床样本中经常观察到 P-糖蛋白 (Pgp) 表达增加。尽管已经取得了进展,但 Pgp 表达的调控尚未完全了解。药物选择细胞和难治性肿瘤中的 MDR-1/Pgp 表达是否受到与正常组织或药物敏感细胞类似的调控控制?我们的结果表明答案是否定的。在所有源自正常不表达MDR-1或低水平表达MDR-1的亲本细胞的耐药细胞系中,调节MDR-1表达的机制是获得性的且异常的。来自不相关的活性启动子的表达,以正常或异常方向进行,可以控制转录。这主要是由于基因重排导致 MDR-1 被不相关的启动子捕获的结果。或者,异常转录可以从 MDR-1 的 112 kb 5 引物区域开始。在药物选择之后,该区域充当启动子。有证据表明,HERV LTR 参与了这种异常转录,并且附近序列的乙酰化可能是该异常启动子激活过程中的重要表观遗传事件。我们的研究目标是(1)了解获得性 MDR-1 表达的分子基础; (2) 理解这些变化如何/为何发生; (3) 在临床样本中寻找它们,(4) 制定策略来减少或预防它们的发生。我们的努力越来越多地致力于了解正常组织如何受到这些药物的影响,以及它们可能或可能不受药物转运蛋白(如 P-糖蛋白和半转运蛋白)保护的程度,ABCG2 项目描述和计划:我们已经确定基因重排是在大量细胞系和患者样本中激活 MDR-1 的机制。这些重排是随机发生的,其特点是转录活性基因 5 prime 与 MDR-1 并置,从而避免了 MDR-1 结构的破坏。 这些导致 MDR-1 激活的基因重排代表了具有以下特征的耐药机制:(i)重排是一种获得性表型,在亲代细胞中未检测到;(ii)重排提供了 MDR-1 激活的机制。 1 在不表达 MDR-1 或表达水平非常低的 MDR-1 的细胞中;这不是在显着水平内源性表达 MDR-1 的细胞中过度表达 MDR-1 的机制。其他特征包括以下内容: (1) 这些细胞中的大多数 MDR-1 转录物是混合 mRNA。 (2) 通过将活性启动子 5 与 MDR-1 并置并在该启动子处启动转录来发生激活。可以在多种细胞中容易地检测到非MDR-1基因的表达,这表明非MDR-1基因具有组成型活性并且具有广泛表达。此外,在非 MDR-1 序列的信息可用的情况下,与 MDR-1 融合的残基来自相应基因的 5 素 UTR (3) 重排似乎是随机发生的,涉及在 7 号染色体中发现的基因7号染色体以外的染色体中。7号内的序列被发现是MDR-1的着丝粒或端粒(即发生倒位)。断点已在八种耐药细胞系中得到表征。重排是由于同源重组或非同源末端连接而发生的。虽然断点似乎是独特的,但 Alu 重复序列或其他常见的重复序列似乎参与了大多数重排。除了导致 MDR-1 捕获的基因重排之外,我们还确定了获得性 MDR-1 表达的第二种机制:从位于 112 kb 5 prime 的异常启动子到 MDR-1 正常起始处的异常转录。检查细胞培养物中 MDR-1/Pgp 表达的早期研究得出结论,MDR-1 表达受到指定为上游和下游启动子的两个启动子的控制。我们现在认识到下游启动子是正常的 MDR1 启动子。含有下游启动子起始残基的附加序列5'的转录本被假定源自推定的上游启动子。我们发现,在许多情况下,上游启动子实际上是另一个不相关基因的启动子,如上所述。 然而,在几种耐药细胞系中,5prim RACE 发现靠近残基-194 的相似5prim 序列,表明这些细胞系中的转录物共享相似的起始位点。 GENBANK 搜索发现,这些耐药细胞系共有的 251 bp 是 MDR-1 转录正常起始位点的 112,276 bp 5 引物。除 ZR-75B 细胞外,在任何亲本细胞中均未检测到 251 bp 的表达,在 15 个正常组织中也未检测到该表达,表明在正常情况下不会发生表达。进一步的研究表明,这些转录本是异常的,并且它们的表达受到附近基因组序列的调节,其中可能包括人内源性逆转录病毒LTR。该 LTR 的表达发生在所有细胞中。然而,在药物选择后,MDR-1 转录物在该逆转录病毒 LTR 附近开始转录,其转录方向与通常的 LTR 转录相反。由于这些异常 MDR-1 转录物的表达仅在耐药细胞系中发现,因此我们得出结论,耐药性的发展或随之而来的药物暴露在这种现象的激活中发挥了作用。我们还在我们的细胞系和合作研究中发现证据表明,由于该区域染色质结构的变化,源自该异常启动子的一些转录本可能从该位置开始。这方面的证据包括显示耐药细胞中该区域组蛋白乙酰化增加的数据。我们目前的努力旨在进一步了解这种现象,并开发一种可以在患者样本中准确评估这种现象的测定方法,重点是开发一种可以使用福尔马林固定组织进行的测定方法。我们还一直在研究这些转运蛋白在保护大脑免受化疗药物侵害方面的作用。部分原因是我们认识到,随着我们开发出越来越多的口服药物,我们正在开发的药物可能会绕过保护大脑的机制并赋予其避难所的地位,因为许多相同的转运蛋白保护大脑沿着胃肠道排列,如果要口服给药,药物必须设计成绕过它们。我们正在进行研究,希望了解保护大脑的机制以及绕过这些障碍可能产生的后果。我们正在通过检查体外和体内模型以及对现有临床数据进行详尽的搜索来做到这一点,目的是进一步了解这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio Fojo其他文献
Antonio Fojo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonio Fojo', 18)}}的其他基金
Adrenocortical Cancer and Thyroid Carcinomas: Models with Unique Properties
肾上腺皮质癌和甲状腺癌:具有独特特性的模型
- 批准号:
7965479 - 财政年份:
- 资助金额:
$ 36.99万 - 项目类别:
Cancers with Unique Properties: Pheochromocytoma, Adrenal and Thyroid Cancer
具有独特性质的癌症:嗜铬细胞瘤、肾上腺癌和甲状腺癌
- 批准号:
9153617 - 财政年份:
- 资助金额:
$ 36.99万 - 项目类别:
Adrenocortical Cancer and Thyroid Carcinomas: Models with Unique Properties
肾上腺皮质癌和甲状腺癌:具有独特特性的模型
- 批准号:
8157372 - 财政年份:
- 资助金额:
$ 36.99万 - 项目类别:
Cancers with Unique Properties: Pheochromocytoma, Adrenal and Thyroid Cancer
具有独特性质的癌症:嗜铬细胞瘤、肾上腺癌和甲状腺癌
- 批准号:
8552755 - 财政年份:
- 资助金额:
$ 36.99万 - 项目类别:
相似国自然基金
ABCG2基因421/34位多态双杂合突变的顺反式类型对BCRP功能影响及其机制研究
- 批准号:81603197
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
胎盘转运体编码基因ABCB1及ABCG2多态性对胎盘药物转运的影响及机制研究
- 批准号:81560252
- 批准年份:2015
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Development and Translation of Generator-Produced PET Tracer for Myocardial Perfusion Imaging
用于心肌灌注成像的发生器产生的 PET 示踪剂的开发和转化
- 批准号:
10368966 - 财政年份:2019
- 资助金额:
$ 36.99万 - 项目类别:
Inhibition of Pim kinases in acute myeloid leukemia
急性髓性白血病中 Pim 激酶的抑制
- 批准号:
8733336 - 财政年份:2014
- 资助金额:
$ 36.99万 - 项目类别:
Mechanisms of non-classical multidrug resistance in cancer
癌症非经典多药耐药机制
- 批准号:
8937862 - 财政年份:
- 资助金额:
$ 36.99万 - 项目类别:
Mechanisms of non-classical multidrug resistance in cancer
癌症非经典多药耐药机制
- 批准号:
9153686 - 财政年份:
- 资助金额:
$ 36.99万 - 项目类别: