Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders

利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测

基本信息

  • 批准号:
    10609805
  • 负责人:
  • 金额:
    $ 19.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT This K23 proposal seeks to provide an early-career clinical psychologist and neuroscientist (Dr. Alexander Weigard) with the mentorship, training, and resources necessary to launch a career as an independent patient- oriented investigator focused on using advanced computational methods to elucidate etiological mechanisms of substance use disorders (SUDs) and generate meaningful predictions for patients. The candidate will work towards this long-term goal through the completion of a research project focused on assessing whether two advanced computational methods can facilitate the selection of features from neuroscientific data that are relevant for the individualized prediction of SUD risk in youth. Although extant research in developmental neuroscience has identified multiple early risk factors that are associated with development of SUD at the group level, there is currently a dearth of large scale, replicable research in which neurocognitive data are used to make reliable and generalizable predictions of SUD outcomes for individual youth. In the proposed project, the candidate will combine his existing expertise in computational models of cognition with new training in predictive informatics methods to assess whether two advanced computational approaches, a) sequential sampling models (SSMs) of cognition and b) network neuroscience, can be used to extract features from longitudinal neurocognitive data that enhance the prediction of youths’ SUD outcomes. The candidate will conduct extensive analyses with two large data sets (Michigan Longitudinal Study, Adolescent Brain Cognitive Development Study) and collect pilot data with 60 young adults to accomplish the following research aims: 1) Quantify the added benefit of SSM parameters for improving the performance of multivariate SUD prediction models, and 2) Identify the multivariate neural signature of v, an SSM parameter with promising links to substance use, and determine the potential of this signature for predicting a precursor to SUD (substance use initiation in mid-adolescence) in ABCD and differentiating young adults with SUDs in the newly-collected pilot sample. Completion of the following training objectives will ensure that the candidate can both carry out the proposed project and establish himself as an independent investigator who is well-equipped to conduct future projects following from this work: 1) Mastering principles of machine learning model development and testing in longitudinal data sets, 2) building expertise in using multivariate network neuroscience methods for feature selection and prediction, 3) increasing clinical and epidemiological knowledge of SUD risk factors beyond neurocognition, and 4) improving professional skills necessary to become an independent patient-oriented investigator. The proposed K23 aims to take a crucial step towards the development of advanced computational neuroscience methods that may ultimately inform SUD prevention efforts by identifying reliable predictors of individuals’ SUD risk, and to set the candidate up to independently conduct leading edge research in the interest of this larger goal.
项目概要/摘要 这项 K23 提案旨在提供一名职业生涯早期的临床心理学家和神经科学家(亚历山大博士) Weigard)拥有开展独立患者职业所需的指导、培训和资源- 定向研究人员专注于使用先进的计算方法来阐明病因机制 药物滥用障碍 (SUD) 并为患者生成有意义的预测。 通过完成一个研究项目来实现这一长期目标,该项目的重点是评估两个 先进的计算方法可以促进从神经科学数据中选择特征 尽管存在发育方面的研究,但与青少年 SUD 风险的个体化预测相关。 神经科学已确定多种与 SUD 发展相关的早期危险因素 在群体层面上,目前缺乏使用神经认知数据的大规模、可复制的研究 在拟议的项目中,对 SUD 的结果做出可靠且普遍的预测。 候选人将把他在认知计算模型方面的现有专业知识与新的培训相结合 预测信息学方法来评估两种先进的计算方法是否,a)顺序 认知采样模型(SSM)和 b)网络神经科学,可用于从 纵向神经认知数据可增强对青少年 SUD 结果的预测。 使用两个大型数据集进行广泛的分析(密歇根纵向研究、青少年大脑认知 发展研究)并收集 60 名年轻人的试点数据,以实现以下研究目标:1) 量化 SSM 参数对于提高多元 SUD 性能的额外优势 预测模型,以及 2) 识别 v 的多元神经特征,这是一个 SSM 参数 与物质使用有希望的联系,并确定该特征用于预测药物滥用的潜力 ABCD 中 SUD(青春期中期开始物质使用)的前身和区分年轻人 新收集的试点样本中患有 SUD 的成年人将完成以下培训目标。 确保候选人能够执行拟议的项目并确立自己的独立地位 研究者有能力根据这项工作开展未来的项目:1)掌握原理 纵向数据集的机器学习模型开发和测试,2)建立以下方面的专业知识 使用多元网络神经科学方法进行特征选择和预测,3)增加 神经认知之外的 SUD 危险因素的临床和流行病学知识,以及 4) 提高 成为独立的以患者为中心的研究者所必需的专业技能。 K23旨在向先进计算神经科学方法的发展迈出关键一步 通过识别个人 SUD 风险的可靠预测因素,最终可以为 SUD 预防工作提供信息,以及 为了这个更大的目标,让候选人独立进行前沿研究。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A cognitive process modeling framework for the ABCD study stop-signal task.
  • DOI:
    10.1016/j.dcn.2022.101191
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Weigard, Alexander;Matzke, Dora;Tanis, Charlotte;Heathcote, Andrew
  • 通讯作者:
    Heathcote, Andrew
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Weigard其他文献

Alexander Weigard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Weigard', 18)}}的其他基金

Efficiency of evidence accumulation (EEA) as a higher-order, computationally defined RDoc construct
证据积累效率 (EEA) 作为高阶、计算定义的 RDoc 构造
  • 批准号:
    10663601
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
  • 批准号:
    10213907
  • 财政年份:
    2021
  • 资助金额:
    $ 19.66万
  • 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
  • 批准号:
    10382322
  • 财政年份:
    2021
  • 资助金额:
    $ 19.66万
  • 项目类别:

相似国自然基金

青春期发育对青少年心理行为发展的影响及生理机制
  • 批准号:
    32300888
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
家庭关系对青少年网络游戏成瘾的影响:行为与认知神经机制
  • 批准号:
    31800937
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基因与同伴环境对青少年冒险行为的调控及其神经机制
  • 批准号:
    31800938
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
青春期甲基苯丙胺暴露对小鼠脑发育的影响以及作用机制研究
  • 批准号:
    81772034
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
青春期可卡因滥用对成年时前额皮质内侧部锥体神经元功能的影响:GABA能突触传递的调控机制研究
  • 批准号:
    81571303
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 19.66万
  • 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 19.66万
  • 项目类别:
RP5 MPT Study
RP5 MPT 研究
  • 批准号:
    10595905
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
Hormonal Contraceptives and Adolescent Brain Development
激素避孕药和青少年大脑发育
  • 批准号:
    10668018
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
Feasibility and acceptability of a father-based intervention to support adolescents reproductive health
以父亲为基础的干预措施支持青少年生殖健康的可行性和可接受性
  • 批准号:
    10666721
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了