Compensatory Mitochondrial Protective Mechanisms Against Oxidative Stress in PD
PD 中氧化应激的补偿性线粒体保护机制
基本信息
- 批准号:10609521
- 负责人:
- 金额:$ 43.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmericanAnimal ModelBiogenesisBiological ModelsBrain-Derived Neurotrophic FactorCREB1 geneCell Culture TechniquesCell NucleusCell SurvivalCell modelCellsChemicalsCognitive deficitsComplexDiseaseDisease ProgressionDisease modelExhibitsGenetic TranscriptionGoalsHistologicHistone DeacetylaseHumanInflammatory ResponseMediatingMitochondriaModelingMolecularMusNatureNerve DegenerationNeurodegenerative DisordersNeuronsNeurotoxinsNuclearNuclear AccidentsNuclear ProteinNuclear TranslocationOutcomes ResearchOxidative StressParkinson DiseasePathologicPathway interactionsPeptidesPhosphotransferasesPredispositionProcessProtein KinaseProtein translocationProtein-Serine-Threonine KinasesQuality ControlReportingResearchRoleSignal PathwaySignal TransductionStressSystemTestingTimeTranscriptional RegulationUp-Regulationconditional knockoutconstitutive expressiondopaminergic neuroneffective therapyimprovedinnovationmitochondrial dysfunctionmitopark mousemotor deficitmouse modelmtTF1 transcription factorneuralneurochemistryneuroinflammationneuronal survivalneuroprotectionnigrostriatal systemnovelnovel therapeutic interventionoxidative damagepreclinical efficacypreventprogramsprotein activationresponsestemtherapeutic targettranslational approachtranslational potential
项目摘要
Abstract
The complex and prolonged disease course exhibited by Parkinson’s disease (PD) first starts with non-motor
disturbances and then slowly progresses to mild-to-moderate motor deficits, ultimately inflicting severe motor
and cognitive deficits. Although pathophysiological mechanisms underlying various stages of the disease have
yet to be characterized, both mitochondrial dysfunction (MD) and neural oxidative stress (OS) have been
identified as key pathological correlates in the progressive neurodegenerative process in PD. While studying key
oxidative signaling mechanisms that regulate susceptibility of the nigrostriatal dopamin(DA)ergic system to MD
and oxidative damage, we unexpectedly discovered that protein kinase D1 (PKD1) is highly expressed in nigral
DAergic neurons and that the kinase is rapidly activated during the early stages of oxidative insult to protect
DAergic neurons against oxidative damage. Our mechanistic studies revealed that activated PKD1 rapidly
translocates to both mitochondria and the nucleus of DAergic neurons. Our preliminary studies show that
activated PKD1 likely enhances the transcription of key neuro-adaptive oxidative mechanisms involving
enhanced PGC1-α, TFAM and BDNF signaling pathways. Thus, the goal of this study is to elucidate
mitochondrial/nuclear events governing the PKD1-mediated compensatory protective response using cell and
animal models of PD. The overarching hypothesis of our proposal is that the pro-survival kinase PKD1 is rapidly
activated in nigral DAergic neurons during the initial stage of an oxidative insult and quickly translocates to
mitochondria and nuclei to initiate cell survival signaling pathways. Its nuclear translocation initiates key pro-
survival transcriptional machinery responsible for PGC1-α, TFAM and BDNF upregulation, leading to enhanced
mitochondrial biogenesis and neurotrophic support in DAergic neurons. Mitochondrial translocation of PKD1
improves mitochondrial function by regulating mitochondrial quality control (MQC). Thus, PKD1 serves as a key
‘compensatory adaptive switch’ in nigral DAergic neurons. To test this, we will systematically pursue the following
specific aims: (i) characterize PKD1 activation and nuclear/mitochondrial translocation and its functional
relevance in cell culture and animal models of PD; (ii) characterize the downstream pro-survival signaling
pathways activated by PKD1 mitochondrial/nuclear translocation in DAergic neurons; and (iii) validate PKD1 as
a therapeutic target of PD and examine the translational potential of a novel PKD1 activator. We will use multiple
model systems and state-of-the-art cellular, histological and neurochemical approaches to achieve these specific
aims. Our multifaceted approach to harness the PKD1 adaptive signaling mechanisms that promote DAergic
neuronal survival will enable us to devise a novel translational strategy capable of intervening early in the course
of disease progression in PD.
抽象的
帕金森氏病(PD)暴露的复杂且长期的疾病病程首先从非运动开始
干扰,然后慢慢发展为轻度到中度电动机定义,最终造成严重电机
和认知缺陷。尽管疾病各个阶段的病理生理机制
尚待表征,线粒体功能障碍(MD)和神经氧化应激(O)均已
在PD的进行性神经退行性过程中被确定为关键病理相关性。在研究钥匙的同时
氧化信号传导机制,这些机制调节骨纹状体多巴胺(DA)ERGIC系统对MD的敏感性
和氧化损伤,我们意外地发现蛋白激酶D1(PKD1)在nigral中高度表达
Daergic神经元,并在氧化损伤的早期阶段迅速激活激酶以保护
抗氧化损伤的daergic神经元。我们的机械研究表明,激活的PKD1迅速
易位到线粒体和脂类神经元的核。我们的初步研究表明
活化的PKD1可能会增强关键神经自适应氧化机制的转录
增强的PGC1-α,TFAM和BDNF信号通路。这是这项研究的目的是阐明
使用细胞和
PD的动物模型。我们提案的总体假设是亲苏生激酶PKD1迅速
在氧化物侮辱的初始阶段,在ni核硫酸神经元中激活,并迅速易位
线粒体和核启动细胞存活信号通路。它的核易位启动了关键的亲
负责PGC1-α,TFAM和BDNF上调的生存转录机械,导致增强
Daergic神经元中的线粒体生物发生和神经营养支持。 PKD1的线粒体易位
通过调节线粒体质量控制(MQC)来改善线粒体功能。那,PKD1充当钥匙
nigral daergic神经元中的“补偿性自适应开关”。为了测试这一点,我们将系统地追求以下
具体目的:(i)表征PKD1激活和核/线粒体易位及其功能
与PD的细胞培养和动物模型相关; (ii)表征下游促生物信号传导
Daergic神经元中的PKD1线粒体/核易位激活的途径; (iii)验证PKD1为
PD的治疗靶标,并检查新型PKD1激活剂的翻译潜力。我们将使用多个
模型系统以及最先进的细胞,组织学和神经化学方法,以实现这些特定
目标。我们利用PKD1自适应信号传导机制来促进DAERGIC的多方面方法
神经元的生存将使我们能够制定一种能够在课程初期进行干预的新型翻译策略
PD疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARTHI KANTHASAMY其他文献
ARTHI KANTHASAMY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARTHI KANTHASAMY', 18)}}的其他基金
Role of Prokineticin 2 in Metal Neurotoxicity
Prokineticin 2 在金属神经毒性中的作用
- 批准号:
10587599 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Compensatory Mitochondrial Protective Mechanisms Against Oxidative Stress in PD
PD 中氧化应激的补偿性线粒体保护机制
- 批准号:
10453241 - 财政年份:2022
- 资助金额:
$ 43.6万 - 项目类别:
The Role of KCa3.1 in Microglial function and in Parkinsons disease pathogenesis
KCa3.1 在小胶质细胞功能和帕金森病发病机制中的作用
- 批准号:
10631159 - 财政年份:2021
- 资助金额:
$ 43.6万 - 项目类别:
The Role of KCa3.1 in Microglial function and in Parkinsons disease pathogenesis
KCa3.1 在小胶质细胞功能和帕金森病发病机制中的作用
- 批准号:
10551785 - 财政年份:2021
- 资助金额:
$ 43.6万 - 项目类别:
The Role of KCa3.1 in Microglial function and in Parkinsons disease pathogenesis
KCa3.1 在小胶质细胞功能和帕金森病发病机制中的作用
- 批准号:
10445079 - 财政年份:2021
- 资助金额:
$ 43.6万 - 项目类别:
Exosomes and Neuroinflammation in Parkinsons Disease
外泌体和帕金森病的神经炎症
- 批准号:
9207021 - 财政年份:2015
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8469590 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8273762 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8658161 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
Prokineticin 2 and Neuroinflammatory Mechanisms
Prokineticin 2 和神经炎症机制
- 批准号:
8843981 - 财政年份:2012
- 资助金额:
$ 43.6万 - 项目类别:
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Synergistically Target Mitochondria for Heart Failure Treatment
协同靶向线粒体治疗心力衰竭
- 批准号:
10584938 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别: