Mechanisms of locomotor rhythm generation in rodent spinal cord
啮齿动物脊髓运动节律的产生机制
基本信息
- 批准号:10605444
- 负责人:
- 金额:$ 52.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAnimalsAtaxiaBehaviorClinicalComputer ModelsContralateralCouplingDataDevelopmentDevicesDiseaseDisinhibitionElectrophysiology (science)ElementsEnvironmentEquilibriumExcisionExtensorFlexorFoodFrequenciesFutureGap JunctionsGenerationsGeneticGenetic studyHumanIndividualInjuryInterneuronsIpsilateralLeftLifeLocomotionMethodsMotorMotor ActivityMovementNeonatalNeural Network SimulationNeuraxisNeuronsOutputPathway interactionsPatternPeriodicityPeripheralPharmaceutical PreparationsPharmacologyPharmacology StudyPhysiologicalPopulationPreparationPropertyRecoveryRegulationResearch PersonnelRodentRoleShapesSliceSpinalSpinal CordSpinal cord injuryStrokeSynapsesTestingTransgenic MiceTriad Acrylic Resinbaseflexibilityinsightlocomotor controlmotor behaviormotor disordermultidisciplinaryneuromechanismneuronal circuitryneuroregulationoperationrelating to nervous systemrestorationsynaptic inhibitiontooltranscription factorvoltage
项目摘要
ABSTRACT
Locomotion is a fundamental behavior that allows humans and animals to move through their environments and
is critically involved in all aspects of life. This behavior is impeded in a number of diseases, disorders, and
injuries, including spinal cord injury, stroke, and various ataxias. All of the essential circuity to generate locomotor
rhythm and pattern is located in the thoracolumbar spinal cord, most often below the level of neural damage.
These circuits can be accessed directly via various central and peripheral stimulation methods, including but not
limited to epidural stimulation. Rhythm generating circuits are the entry point for initiation and control of
locomotion, affect all downstream neurons related to locomotion, and, therefore, are the first step in establishing
spinal control of locomotion. Successful activation of the rhythm generator clinically has been hampered because
the mechanisms by which spinal neuronal circuits generate coordinated rhythmic output remain poorly
understood and represents a major gap in our understanding of neural control of movement. The generation of
rhythmic motor behaviors is based on a triad involving: (1) specific “rhythmogenic” properties allowing individual
neurons to generate rhythmic oscillations, (2) mutual excitatory interactions to synchronize neuronal activity into
rhythmic populational bursting, and (3) network inhibition to coordinate activity between different neuronal
populations, which can both shape locomotor pattern and control frequency. Triad components are highly
interconnected and the involvement of each component is condition-dependent. The proposed study will use
highly integrated electrophysiological, pharmacological, genetic, and computational approaches to systematically
explore the specific contributions of these mechanisms and the interactions between them, in the generation and
patterning of the locomotor rhythm. Utilizing spinal neurons identified in transgenic mice by the transcription
factor Shox2 as a representative rhythm generating population, we will test the overarching hypothesis that rhythm
generating mechanisms in the spinal cord involve interplay between the triad of cellular, population, and network
properties, whose contribution to rhythmogenesis is interdependent, leading to flexibility and adaptability seen
as alterations in the relative balance of the triad in different conditions. We will first determine the voltage-gated
currents underlying spontaneous cellular oscillations in adult Shox2 neurons. We will then assess excitatory
interactions between rhythm generating neurons. Lastly, we will establish the role of ipsilateral and contralateral
network interactions in regulating locomotor frequency, and determine the operation of these pathways during
afferent-evoked locomotion. Together, our multidisciplinary study will reveal mechanisms of rhythm generation,
establish the first mammalian locomotor neural network model based on “real” rhythm generating cellular and
network properties, and determine the ways by which afferent stimulation may influence the locomotor rhythm
and pattern generated in the spinal cord. The results of these studies will identify specific neural targets for the
future devices and strategies aimed at restoration of locomotion following injury or motor disorders.
抽象的
运动是一种基本行为,允许人类和动物在其环境中移动
与生活的各个方面有批判性参与。这种行为在多种疾病,疾病和
损伤,包括脊髓损伤,中风和各种共济失调。产生运动的所有基本电路
节奏和图案位于胸骨脊髓中,通常低于神经元损伤水平。
这些电路可以通过各种中央和外围刺激方法直接访问,包括但不能
仅限于硬膜外刺激。节奏产生电路是启动和控制的切入点
运动,影响与运动有关的所有下游神经元,因此是建立的第一步
运动的脊柱控制。在临床上成功激活节奏发电机已受到阻碍
脊柱神经元电路产生协调的节奏输出的机制保持较差
理解并代表我们对运动神经控制的理解。一代
有节奏的运动行为基于涉及的三合会:(1)特定的“节律性”特性允许个人
神经元产生节奏振荡,(2)相互兴奋的相互作用,将神经元活性同步到
有节奏的种群破裂,(3)网络抑制以协调不同神经元之间的活性
种群,既可以塑造运动模式和控制频率。三合会组件高度高
互连和每个组件的参与是条件依赖性的。拟议的研究将使用
高度整合的电生理,药物,遗传和计算方法
探索这些机制的具体贡献及其之间的相互作用,在一代和
运动节奏的图案。利用转录在转基因小鼠中鉴定的脊柱神经元
因子SHOX2作为代表性的节奏产生人群,我们将检验以下的总体假设
脊髓中的生成机制涉及细胞,种群和网络三合会之间的相互作用
对节律发生的贡献的特性是相互依存的,导致了灵活性和适应性
随着在不同条件下三合会的相对平衡的改变。我们将首先确定电压门控
目前,成人SHOX2神经元中的基本赞助细胞振荡。然后,我们将评估兴奋性
节奏产生神经元之间的相互作用。最后,我们将确定同侧和对侧的作用
确定运动频率的网络相互作用,并确定这些途径的操作
传入诱发的运动。我们的多学科研究一起将揭示节奏产生的机制,
建立基于“真实”节奏产生细胞和的第一个哺乳动物运动神经网络模型
网络属性,并确定传入刺激可能影响运动节奏的方式
和脊髓中产生的图案。这些研究的结果将确定特定的神经目标
未来的设备和策略旨在恢复受伤或运动障碍后的运动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly J Dougherty其他文献
Kimberly J Dougherty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly J Dougherty', 18)}}的其他基金
Mechanisms of locomotor rhythm generation in rodent spinal cord
啮齿动物脊髓运动节律的产生机制
- 批准号:
10708988 - 财政年份:2022
- 资助金额:
$ 52.31万 - 项目类别:
Specific spinal locomotor circuit alterations induced by epidural stimulation
硬膜外刺激引起的特定脊髓运动回路改变
- 批准号:
10041067 - 财政年份:2020
- 资助金额:
$ 52.31万 - 项目类别:
Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
- 批准号:
10213148 - 财政年份:2018
- 资助金额:
$ 52.31万 - 项目类别:
Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
- 批准号:
10447027 - 财政年份:2018
- 资助金额:
$ 52.31万 - 项目类别:
CRCNS: Rhythm generation in rodent spinal cord
CRCNS:啮齿动物脊髓节律的产生
- 批准号:
9114688 - 财政年份:2015
- 资助金额:
$ 52.31万 - 项目类别:
CRCNS: Rhythm generation in rodent spinal cord
CRCNS:啮齿动物脊髓节律的产生
- 批准号:
9325618 - 财政年份:2015
- 资助金额:
$ 52.31万 - 项目类别:
Plasticity of Spinal Inhibition in Spinal Cord Injury
脊髓损伤中脊髓抑制的可塑性
- 批准号:
6836863 - 财政年份:2004
- 资助金额:
$ 52.31万 - 项目类别:
Plasticity of Spinal Inhibition in Spinal Cord Injury
脊髓损伤中脊髓抑制的可塑性
- 批准号:
6938536 - 财政年份:2004
- 资助金额:
$ 52.31万 - 项目类别:
相似国自然基金
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
- 批准号:42307349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 52.31万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 52.31万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 52.31万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 52.31万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 52.31万 - 项目类别: