Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
基本信息
- 批准号:10447027
- 负责人:
- 金额:$ 64.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent PathwaysAftercareAnimalsBiologicalBionicsBrain-Derived Neurotrophic FactorCaliberChronicCollaborationsCombined Modality TherapyDataDevelopmentElectrophysiology (science)FutureGeneticGenetic TechniquesGoalsH-ReflexHyperreflexiaHyporeflexiaIn VitroInterneuronsKnowledgeLaboratoriesLightLocomotionLocomotor RecoveryMediatingMethodsModelingMolecularMolecular GeneticsMotorMusNeurotrophic Tyrosine Kinase Receptor Type 2PathologyPatternPharmacologyPhysiologicalPopulationPreparationPreventionProcessRattusRecoveryRecovery of FunctionReflex actionRehabilitation therapyResearch PersonnelRobotRodentSensoryShapesSignal TransductionSpatial DistributionSpecificitySpinalSpinal CordSpinal cord injurySystemTactileTestingTherapeuticTimeTrainingTransgenic MiceVariantVentral RootsViralWalkingWorkexperimental studyfunctional improvementimprovedimproved outcomein vivoloss of functionmotor recoverymouse modelneural stimulationnovelnovel therapeutic interventionoptogeneticspresynapticpreventrehabilitation paradigmrelating to nervous systemsensory gatingside effectskillsspinal nerve posterior rootspinal reflexsynergismtherapeutic targettreadmill
项目摘要
Abstract
Our project represents a new collaboration of two laboratories with differing but complementary skills, with the
goal of understanding plasticity of specific spinal circuits and the effects of epidural stimulation on these. The
project is built on new observations and paradigms developed by both our laboratories. Although we
understand increasingly more about both (a) spinal circuits at the level of molecular genetics identified
developmental interneuron classes and (b) spinal plasticity in the context of spinal cord injury (SCI), these two
types of information are only rarely integrated experimentally to fully leverage the power of their combination.
We will use a novel paradigm which explores the combination of biological/viral, bionic and rehabilitation
therapies in complete SCI in both the rat and the mouse in order to obtain the power of both approaches in
analyzing spinal plasticity and pathology after SCI. In the rat model in this paradigm we already have new data
showing that the combination of rehabilitation and virally derived BDNF treatment after complete SCI leads to
significant gains in function as a result of this combination treatment. However, in 40% of the treated rats, after
the initial high gains achieved, it was observed that a hyperreflexia developed, causing a large collapse in
function. In contrast, it was observed that in rats which also receive epidural stimulation (ES) of lumbosacral
spinal cord during treatment (in addition to the viral driven BDNF and rehabilitative treatments) no rats showed
any such hyperreflexia. This project seeks to use this paradigm to understand plasticity of spinal circuits that
support function, create hyperreflexia and collapse, and that prevent such collapse with ES. We do not yet
know if there exist specific time windows for the ES efficacy in preventing collapse. The ES in some way steers
the course of plasticity away from pathology in the model when applied in a timely way. Our overall Aims are to
characterize the best timing of ES and to understand in detail many of the changes that result. We seek to
determine if specific genetically identified circuits show plasticity, and are targets of ES, and how these circuits
contribute and alter in order to support walking functions. We also seek to understand what goes awry to cause
collapse of function in some animals without ES treatment. Our planned work is important and impactful
because it will shed new light on circuit changes and function after SCI. It will test how identified interneuron
populations and functional circuits in the spinal cord are altered. It will deepen and broaden our understanding
of the actions of epidural stimulation in promoting and shaping spinal plasticity supporting walking, and identify
the therapeutic targets, windows of action, and interactions of epidural stimulation with other therapies. ES is
becoming a promising and broadly applicable therapy for SCI conditions, but our understanding of fundamental
mechanisms of action and interaction with other therapies remains limited. This project begins to address this
gap using precise physiological and genetic methods.
抽象的
我们的项目代表了两个具有不同但互补技能的实验室的新合作
了解特定脊髓电路的可塑性以及硬膜外刺激对它们的影响。这
项目建立在我们两个实验室开发的新观察和范式上。虽然我们
越来越了解(a)在鉴定的分子遗传学水平上的(a)脊柱回路
在脊髓损伤(SCI)的情况下,发育中间神经元类别和(b)脊柱可塑性,这两个
信息类型仅在实验中很少集成,以充分利用其组合的能力。
我们将使用一种新颖的范式,探索生物/病毒,仿生和康复的组合
在大鼠和小鼠中完全SCI的疗法,以获得两种方法的能力
SCI后分析脊柱可塑性和病理。在此范式中的大鼠模型中,我们已经有了新数据
表明完整的SCI后,康复和病毒衍生的BDNF治疗的结合导致
由于这种组合处理,功能的显着增长。但是,在40%的治疗大鼠中
最初的高收益达到了,观察到了高反射性的发展,导致大量崩溃
功能。相反,观察到在接受硬膜外刺激(ES)的大鼠中
治疗期间的脊髓(除了病毒驱动的BDNF和康复治疗)
任何这样的过度反射症。该项目旨在利用这种范式来了解脊柱电路的可塑性
支持功能,产生超反射和崩溃,并防止ES崩溃。我们还没有
知道是否存在特定的时间窗口来防止ES功效。 ES以某种方式转向
及时应用模型中的可塑性远离病理。我们的总体目标是
表征ES的最佳时机,并详细了解导致的许多变化。我们寻求
确定特定遗传鉴定的电路是否显示可塑性,并且是ES的靶标,以及这些电路如何
贡献和改变以支持步行功能。我们还试图了解什么是出错的原因
某些动物的功能崩溃未经ES治疗。我们计划的工作很重要且有影响力
因为它将为SCI后的电路变化和功能提供新的启示。它将测试识别中间神经元如何
脊髓中的种群和功能电路改变了。它将加深并扩大我们的理解
硬膜外刺激在促进和塑造脊柱可塑性方面的作用,并确定
硬膜外刺激与其他疗法的治疗靶点,作用窗口以及相互作用。 ES是
成为SCI条件的有前途且广泛适用的疗法,但我们对基本的理解
作用机理和与其他疗法的相互作用仍然有限。这个项目开始解决这个问题
使用精确的生理和遗传学方法的差距。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modular organization of locomotor networks in people with severe spinal cord injury.
- DOI:10.3389/fnins.2022.1041015
- 发表时间:2022
- 期刊:
- 影响因子:4.3
- 作者:Sun, Soo Yeon;Giszter, Simon F.;Harkema, Susan J.;Angeli, Claudia A.
- 通讯作者:Angeli, Claudia A.
Stimulating the cervical spinal cord - combining clinical, classical and basic motor perspectives on epidural stimulation.
- DOI:10.1113/jp281810
- 发表时间:2021-07
- 期刊:
- 影响因子:5.5
- 作者:Giszter, Simon F.
- 通讯作者:Giszter, Simon F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly J Dougherty其他文献
Kimberly J Dougherty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly J Dougherty', 18)}}的其他基金
Mechanisms of locomotor rhythm generation in rodent spinal cord
啮齿动物脊髓运动节律的产生机制
- 批准号:
10708988 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Mechanisms of locomotor rhythm generation in rodent spinal cord
啮齿动物脊髓运动节律的产生机制
- 批准号:
10605444 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Specific spinal locomotor circuit alterations induced by epidural stimulation
硬膜外刺激引起的特定脊髓运动回路改变
- 批准号:
10041067 - 财政年份:2020
- 资助金额:
$ 64.04万 - 项目类别:
Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
- 批准号:
10213148 - 财政年份:2018
- 资助金额:
$ 64.04万 - 项目类别:
CRCNS: Rhythm generation in rodent spinal cord
CRCNS:啮齿动物脊髓节律的产生
- 批准号:
9114688 - 财政年份:2015
- 资助金额:
$ 64.04万 - 项目类别:
CRCNS: Rhythm generation in rodent spinal cord
CRCNS:啮齿动物脊髓节律的产生
- 批准号:
9325618 - 财政年份:2015
- 资助金额:
$ 64.04万 - 项目类别:
Plasticity of Spinal Inhibition in Spinal Cord Injury
脊髓损伤中脊髓抑制的可塑性
- 批准号:
6836863 - 财政年份:2004
- 资助金额:
$ 64.04万 - 项目类别:
Plasticity of Spinal Inhibition in Spinal Cord Injury
脊髓损伤中脊髓抑制的可塑性
- 批准号:
6938536 - 财政年份:2004
- 资助金额:
$ 64.04万 - 项目类别:
相似国自然基金
谷氨酸及其受体经压力反射传入通路参与血压与心脏疼痛感受的性别差异研究
- 批准号:81903599
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
脑肠轴迷走传入通路调控海马小胶质细胞表型转化及黄连解毒汤干预研究
- 批准号:81573635
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
迷走传入神经TRPA1与TRPM8信号通路介导肠粘膜慢性炎症状态下冷刺激引发内脏高敏感的机制研究
- 批准号:81470812
- 批准年份:2014
- 资助金额:67.0 万元
- 项目类别:面上项目
CXCL12-CXCR4信号通路在新生鼠耳蜗听觉传入回路发育中的作用机制研究
- 批准号:81371099
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
Ach和CGRP在前庭核传入、传出神经元直接投射通路中的调节作用
- 批准号:81200739
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Major Burn Injury and its Effects on Acute and Superimposed Surgical Pain
严重烧伤及其对急性和叠加手术疼痛的影响
- 批准号:
10033365 - 财政年份:2020
- 资助金额:
$ 64.04万 - 项目类别:
Major Burn Injury and its Effects on Acute and Superimposed Surgical Pain
严重烧伤及其对急性和叠加手术疼痛的影响
- 批准号:
10465102 - 财政年份:2020
- 资助金额:
$ 64.04万 - 项目类别:
Major Burn Injury and its Effects on Acute and Superimposed Surgical Pain
严重烧伤及其对急性和叠加手术疼痛的影响
- 批准号:
10237933 - 财政年份:2020
- 资助金额:
$ 64.04万 - 项目类别:
Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
- 批准号:
10213148 - 财政年份:2018
- 资助金额:
$ 64.04万 - 项目类别:
Treating PTSD and depression: Mechanisms of pharmacotherapy and psychotherapy in rats
治疗 PTSD 和抑郁症:大鼠药物治疗和心理治疗的机制
- 批准号:
10250669 - 财政年份:2017
- 资助金额:
$ 64.04万 - 项目类别: