Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
基本信息
- 批准号:10606640
- 负责人:
- 金额:$ 80.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-11 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Adrenal Cortex HormonesAnimal ModelBiomechanicsBloodBlood CellsBypassCalciumCalcium SignalingCardiac Surgery proceduresCardiopulmonary BypassCell DeathCellsCellular StructuresCessation of lifeChildhoodClinicalCongenital Heart DefectsCritical PathwaysDataDrug usageExposure toFunctional disorderGene ExpressionGoalsHealth Care CostsImpairmentIn VitroInfantInflammationInflammatoryInflammatory ResponseKnowledgeLeukocytesLyticMediatingMediatorMembraneMolecularMorbidity - disease rateMyeloid CellsNeonatalOperative Surgical ProceduresOrganOutcomePathway interactionsPatientsPatternPhenotypePhosphorylationPhosphotransferasesPhysiologicalPlasmaPlayProcessProtein-Serine-Threonine KinasesPublishingRIPK3 geneReceptor ActivationResearchRoleSTIM1 geneSignal PathwaySignal TransductionTechniquesTemperatureTestingTissuesTranslatingTubecandidate identificationcell cortexcytokineeffectiveness evaluationexperienceexperimental studyimproved outcomein vivoinhibitorinsightmigrationmonocytemortalityneonatal patientnovelnovel strategiespalliationporcine modelpreclinical developmentreceptorrepairedresponseshear stresssmall moleculesystemic inflammatory responsetreatment strategy
项目摘要
The vast majority of pediatric open-heart surgeries require the patient to be supported by cardiopulmonary
bypass (CPB). Exposure to CPB causes systemic inflammation and resultant multi-organ dysfunction. Post-CPB
inflammation is believed to be caused by exposure of the patient’s blood cells to the plastic tubing of the CPB
circuit and unphysiological high shear stress. However, the mechanisms underlying this process are unclear.
Our long-term goal is to understand how these insults contribute to post-CPB inflammation and translate this
knowledge into novel treatment strategies. The scientific premise for this project is that Receptor-Interacting
serine/threonine-Protein Kinase 3 (RIPK3) signaling is a novel mediator of CPB associated inflammation that
can be targeted to improve outcomes for neonatal cardiac surgery patients. Data from neonatal CBP patients, a
large animal model of CPB, and in vitro experiments form the basis of our scientific premise. We recently
published that RIPK3 and necroptosis play a role in post-CPB inflammation. Our data demonstrate that RIPK3
plays a role in post-CPB inflammation. We established that supraphysiologic shear stresses present during CPB
are sufficient to activate RIPK3 signaling in vitro and in a piglet model of CPB. Mechanistically, we found that
shear stress-initiated calcium signaling pathways are critical to the activation of monocytic cells. We have
identified specific pathways that can be targeted with small molecules to reduce CPB-activation of RIPK3 with
goal of reducing systemic inflammatory response and organ dysfunction. We hypothesize that CPB-associated
shear stress activates RIPK3 mediated inflammation. The objectives of this proposal are 1) to determine how
CPB activates RIPK3 signaling, 2) elucidate how RIPK3 signaling contributes to CPB-associated
inflammation/organ dysfunction, and 3) determine if blocking RIPK3 signaling is sufficient to reduce CPB-
associated inflammation and organ dysfunction. Our approach will consist of two specific aims:
Aim 1. Determine how shear stress activates RIPK3 signaling in circulating myeloid cells.
We postulate that supraphysiologic shear stress is sufficient to activate RIPK3 signaling. We will characterize
the shear stress thresholds and molecular mechanism responsible for RIPK3 activation during CPB with a focus
on the roles that the cell cortex, calcium signaling cascade, and shear responsive kinases play in this response.
Aim 2. Demonstrate that RIPK3 signaling mediates CPB-associated inflammation and organ dysfunction.
We postulate that RIPK3 signaling is required for the inflammatory response to CPB. RIPK3 can help propagate
inflammation via necroptosis, the release of cytokines, and leukocyte migration. We will perform in vitro and in
vivo experiments to demonstrate that targeting RIPK3 signaling reduces CPB-associated inflammation.
This research is novel and significant – elucidating how CPB activates RIPK3 signaling and necroptosis could
enable a new treatment paradigm for CPB patients, improve outcomes, and reduce healthcare costs, since the
proposed signaling pathways can be targeted by small molecules in clinical use or pre-clinical development.
绝大多数儿科开心手术要求患者受心肺支持
旁路(CPB)。接触CPB会引起全身性炎症和导致的多器官功能障碍。后CPB
据信炎症是由于患者的血细胞暴露于CPB的塑料管道引起的
电路和非生理高剪切应力。但是,此过程的基础机制尚不清楚。
我们的长期目标是了解这些侮辱如何有助于CPB后注射并将其翻译
了解新颖的治疗策略。该项目的科学前提是受体相互作用
丝氨酸/苏氨酸 - 蛋白激酶3(RIPK3)信号传导是CPB相关注射的新型介质
可以针对改善新生儿心脏手术患者的预后。来自新生儿CBP患者的数据,A
CPB的大动物模型和体外实验构成了我们科学前提的基础。我们最近
发表说RIPK3和坏死性在CPB后炎症中起作用。我们的数据表明RIPK3
在CPB后炎症中起作用。我们确定了CPB期间存在的上刻度生理剪切应力
足以在体外和CPB的小猪模型中激活RIPK3信号传导。从机械上讲,我们发现
剪切应力激发的钙信号通路对于单核细胞的激活至关重要。我们有
确定可以用小分子靶向的特定途径,以减少RIPK3的CPB激活
减少系统性炎症反应和器官功能障碍的目标。我们假设CPB相关
剪切应力激活RIPK3介导的炎症。该提案的目标是1)确定如何
CPB激活RIPK3信号,2)阐明RIPK3信号如何有助于CPB相关
炎症/器官功能障碍,3)确定阻断RIPK3信号是否足以减少CPB-
相关的注射和器官功能障碍。我们的方法将包括两个具体目标:
目标1。确定剪切应力如何激活循环髓样细胞中的RIPK3信号传导。
我们将表征上的生理剪切应力足以激活RIPK3信号传导。
CPB期间负责RIPK3激活的剪切应力阈值和分子机制,重点
关于细胞皮质,钙信号级联反应和剪切响应激酶在此反应中起着的作用。
AIM 2。证明RIPK3信号介导与CPB相关的注射和器官功能障碍。
我们假设RIPK3信号是对CPB的炎症反应所必需的。 RIPK3可以帮助传播
通过坏死,细胞因子的释放和白细胞迁移的炎症。我们将在体外和
体内实验证明靶向RIPK3信号传导可减少与CPB相关的炎症。
这项研究是新颖而重要的 - 阐明CPB如何激活RIPK3信号传导和坏死性可能
为CPB患者启用新的治疗范式,改善预后并降低医疗保健成本,因为
提出的信号通路可以由小分子在临床使用或临床前发育中靶向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VISHAL NIGAM其他文献
VISHAL NIGAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VISHAL NIGAM', 18)}}的其他基金
Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
- 批准号:
10446535 - 财政年份:2022
- 资助金额:
$ 80.16万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不全综合征的多尺度建模方法
- 批准号:
9053027 - 财政年份:2016
- 资助金额:
$ 80.16万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不良综合征的多尺度建模方法
- 批准号:
9260047 - 财政年份:2016
- 资助金额:
$ 80.16万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不良综合征的多尺度建模方法
- 批准号:
9766412 - 财政年份:2016
- 资助金额:
$ 80.16万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7561331 - 财政年份:2007
- 资助金额:
$ 80.16万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7812206 - 财政年份:2007
- 资助金额:
$ 80.16万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7483691 - 财政年份:2007
- 资助金额:
$ 80.16万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
8096600 - 财政年份:2007
- 资助金额:
$ 80.16万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7616412 - 财政年份:2007
- 资助金额:
$ 80.16万 - 项目类别:
相似国自然基金
临床相关的挫伤、剪切伤和牵拉伤胸脊髓损伤大鼠模型的建立及分析研究
- 批准号:81771347
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
剪切应力对椎间盘的影响及其机制研究
- 批准号:81371988
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
中医脊柱推拿“椎骨错缝”动物模型的建立及其生物力学特性和神经传导功能变化研究
- 批准号:81072891
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
不对称力在大鼠脊柱侧凸模型中对椎体和椎间盘血管的影响
- 批准号:81000817
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
不同应力刺激对犬坏死股骨头自身修复影响的实验研究
- 批准号:30970699
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
The impact of age-related vitreous degeneration and vitreous replacement on scleral biomechanics: a novel mechanism and treatment target for glaucoma
年龄相关性玻璃体变性和玻璃体置换对巩膜生物力学的影响:青光眼的新机制和治疗目标
- 批准号:
10647522 - 财政年份:2023
- 资助金额:
$ 80.16万 - 项目类别:
Identifying novel trunk reflexes and their differences after neonatal versus adult spinal cord injury
新生儿与成人脊髓损伤后识别新的躯干反射及其差异
- 批准号:
10753793 - 财政年份:2023
- 资助金额:
$ 80.16万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 80.16万 - 项目类别:
Mechanisms of accelerated calcification and structural degeneration of implantable biomaterials in pediatric cardiac surgery
小儿心脏手术中植入生物材料加速钙化和结构退化的机制
- 批准号:
10655959 - 财政年份:2023
- 资助金额:
$ 80.16万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 80.16万 - 项目类别: