Adaptive Frequency Band Estimation and Analysis
自适应频带估计和分析
基本信息
- 批准号:10642136
- 负责人:
- 金额:$ 28.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The frequency-domain properties of many biomedical time series contain valuable information. These
properties are characterized through its power s pectrum, which describes the contribution to the variability
of a time series from waveforms oscillating at different frequencies. Practitioners seeking low dimensional
summarymeasures of the power spectrum from a population often partition frequencies into bands and
create collapsed measures of power within these bands. However, standard frequency bands have
largely been developed through subjective inspection of time series data and may not provide adequate
summary measures of the power spectrum for a given population of interest. This proposal seeks to
establish a new framework for adaptive frequency band estimation and analysis for replicated time series,
thus bridging an important gap between the analysis of spectral information from a single time series and
the analysis of spectral information within a population. The four specific aims associated with the effort
are: (1) to develop a frequency band estimation method for replicated, stationary signals that best
preserves variability across replicates within a population, (2) to develop a local frequency band
estimation method for replicated, nonstationary signals that best preserves time and replicate-varying
behavior within a population, (3) to develop a frequency band estimation method for replicated,
multivariate signals that best preserves the characteristics and interrelationships between individual
components and (4) to develop a suite of user-friendly analytical tools across multiple software platforms.
Monte Carlo simulation studies will be conducted to explore the empirical prope rties of the proposed
methods and to compare their performances to the use of traditional frequency bands. The investigators
will use these new methods to analyze a range ofbiological signals, including heart rate variability, pupil
dilation, and MRI, from three existing studies to address a variety of biological and clinical questions. The
impact in practical investigations is expected to be substantial, equipping practitioners with justified
optimal tools for analyzing data collected from a broad spectrum of scientific and biomedical studies.
RELEVANCE (See instructions):
This proposal will design practical statistical procedures for identifying frequency band summary
measures of biomedical time series data that optimally characterize oscillatory patterns for a population of
interest. The investigators will use these new methods to analyze biological signals from three existing
studies and provide practitioners with optimal tools for analyzing data from a broad spectrum of
biomedical studies.
许多生物医学时间序列的频域特性包含有价值的信息。这些
属性通过其功率谱来表征,功率谱描述了对变异性的贡献
以不同频率振荡的波形的时间序列。追求低维度的从业者
对总体功率谱的总结测量通常将频率划分为频带,
在这些范围内创建崩溃的权力衡量标准。然而,标准频段有
很大程度上是通过对时间序列数据的主观检查而开发的,可能无法提供足够的信息
给定感兴趣群体的功率谱的汇总测量。该提案旨在
建立一个用于复制时间序列的自适应频带估计和分析的新框架,
从而弥合了单个时间序列的光谱信息分析和
对群体内的光谱信息进行分析。与努力相关的四个具体目标
是: (1) 开发一种用于复制、平稳信号的频带估计方法,该方法最适合
保留群体内重复的变异性,(2) 开发局部频带
用于复制、非平稳信号的估计方法,最能保留时间和复制变化
群体内的行为,(3)开发重复的频带估计方法,
最好地保留个体之间的特征和相互关系的多元信号
(4) 开发一套跨多个软件平台的用户友好的分析工具。
将进行蒙特卡罗模拟研究来探索所提出的经验特性
方法并将其性能与使用传统频段进行比较。调查人员
将使用这些新方法来分析一系列生物信号,包括心率变异性、瞳孔变化
扩张和 MRI,来自三项现有研究,旨在解决各种生物学和临床问题。这
预计对实际调查的影响将是巨大的,为从业人员提供合理的依据
用于分析从广泛的科学和生物医学研究中收集的数据的最佳工具。
相关性(参见说明):
该提案将设计实用的统计程序来识别频段摘要
生物医学时间序列数据的测量,可以最佳地表征群体的振荡模式
兴趣。研究人员将使用这些新方法来分析来自三个现有的生物信号
研究并为从业者提供分析各种数据的最佳工具
生物医学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott A Bruce其他文献
Scott A Bruce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott A Bruce', 18)}}的其他基金
相似国自然基金
面向增强核磁共振波谱系统的频率捷变太赫兹回旋管小型化及频率一致性和功率稳定性研究
- 批准号:62371092
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
薄膜铌酸锂微腔中光学频率梳产生原理研究
- 批准号:12304421
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于平板光子晶体中连续域束缚态的光场频率转换调控研究
- 批准号:62375225
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向高阶谐振网络与复杂调制方式的谐振变换器统一多频率小信号建模理论研究
- 批准号:52307196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大尺寸硼酸铋锌晶体生长及其2-3微米频率下转换器件研究
- 批准号:52302011
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Telecommunication band atomic frequency comb quantum memory using stimulated Raman adiabatic passage
使用受激拉曼绝热通道的电信频带原子频率梳量子存储器
- 批准号:
23KJ0051 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of imaging technique for magnetic field distribution near integrated circuit substrate in ultra-high frequency band
超高频段集成电路衬底附近磁场分布成像技术进展
- 批准号:
23H01425 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ionospheric electron density profile prediction for the stable communication quality of high frequency band
高频段稳定通信质量的电离层电子密度剖面预测
- 批准号:
23K03862 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
- 批准号:
2152950 - 财政年份:2022
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
- 批准号:
2152966 - 财政年份:2022
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant