Establishing a Brain Health Index
建立大脑健康指数
基本信息
- 批准号:10761845
- 负责人:
- 金额:$ 86.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-07 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Abstract: Polysomnographic Biomarkers of Brain Aging
Although cognitive decline is a “normal” part of aging, some individuals clearly age better than others.
However, the concept of differential aging has been minimally studied for the brain.
Electroencephalogram (EEG) oscillations signals carry rich information regarding brain health and brain aging.
Alzheimer’s disease (AD) is associated with fragmented sleep and altered sleep oscillations. Clearance of
cerebral beta amyloid through the brain's glymphatic drainage system occurs mainly in non-rapid eye
movement (NREM) sleep, and depends on EEG slow oscillations. Cortical generators of sleep EEG
oscillations overlap with regions of cortical thinning and loss of functional connectivity in AD. Disturbances of
NREM disrupt memory consolidation. Finally, deficient REM sleep contributes to dementia. These observations
suggest that brain health may be measurable from information contained in the sleep EEG.
In preliminary work we have developed EEG-brain age – a machine learning model that predicts a patient’s
age based on patterns of overnight sleeping EEG oscillations. This allows prediction of age with a precision of
+/- 7 years. Our preliminary data suggest diabetes and hypertension, chronic HIV infection, an MCI or AD are
reflected in the EEG as excessive brain age, and that excessive brain age is independently associated with
reduced life expectancy.
Our central hypothesis is that sleep physiology data can provide sensitive and specific biomarkers of brain
health. This hypothesis is based on our prior work showing that BAI is elevated in several clinical populations.
BAI can be accurately calculated using frontal EEG signals, making it suitable for implementation on at-home
EEG devices. The rationale for the proposed research is that validating sleep EEG-derived biomarkers as
measures of brain health at the level of individual patients would lay the ground for use in clinical trials and
patient care. We plan to accomplish the central objective by pursuing two complementary aims. In Aim 1, we
will take a hypothesis-driven approach, and test for associations of specific sleep features with specific
cognitive deficits and specific structural pathology. In Aim 2, we will take ad data-driven approach, and develop
optimized biomarkers of brain health using a novel form of machine learning known as multitask learning,
which combine multiple features of sleep – including conventional features, as well as data-driven features
directly learned from the data – to predict or “explain” variation in cognitive performance and in structural brain
MRI measures that are indicative of brain health or disease. The project will take advantage of a large and
diverse set of sleep data (>33,000 patients), as well as thousands of brain MRI an cognitive testing results.
At the conclusion of this study, we expect to have a better understanding of the role sleep oscillations play in
brain health, and clinically useful brain health biomarkers. These outcomes will aid development of
interventions to promote brain health.
项目摘要:大脑衰老的多个学术生物标志物
尽管认知能力下降是衰老的“正常”一部分,但有些人显然比其他人年龄更好。
但是,差异衰老的概念已被最小化大脑的研究。
脑电图(EEG)振荡信号具有有关大脑健康和大脑衰老的丰富信息。
阿尔茨海默氏病(AD)与睡眠碎片和睡眠振荡改变有关。清除
通过大脑的糖化排水系统的脑β淀粉样蛋白淀粉样蛋白淀粉样蛋白主要发生在非比型眼中
运动(NREM)睡眠,取决于脑电图缓慢的振荡。睡眠脑电图的皮质发电机
振荡与AD中皮质稀疏区域和功能连通性丧失重叠。干扰
NREM破坏内存整合。最后,REM睡眠不足会导致痴呆症。这些观察
表明可以通过睡眠脑电图中的信息来测量大脑健康。
在初步工作中,我们开发了EEG-Brain年龄 - 一种机器学习模型,可以预测患者的
年龄基于过夜的脑电图振荡的模式。这允许年龄的预测精确
+/- 7年。我们的初步数据表明糖尿病和高血压,慢性HIV感染,MCI或AD是
反映在脑电图中是过度的大脑年龄,并且过多的脑年龄与
降低了预期寿命。
我们的中心假设是睡眠生理学数据可以提供敏感和特定的大脑生物标志物
健康。该假设是基于我们先前的工作,表明在几个临床人群中BAI升高。
可以使用额叶脑电图准确地计算BAI,使其适合于在家实施
脑电图。拟议的研究的理由是,验证睡眠脑电图衍生的生物标志物是
个别患者水平的大脑健康措施将为临床试验奠定基础
病人护理。我们计划通过追求两个完整的目标来实现中心目标。在AIM 1中,我们
将采用假设驱动的方法,并测试特定睡眠特征的关联
认知定义和特定的结构病理。在AIM 2中,我们将采用数据驱动的方法,并开发
使用一种新型的机器学习形式(称为多任务学习),优化了大脑健康的生物标志物,
结合了睡眠的多个功能 - 包括常规功能以及数据驱动的功能
直接从数据中学习 - 预测或“解释”认知性能和结构大脑的变化
指示大脑健康或疾病的MRI措施。该项目将利用大型
多种睡眠数据(> 33,000名患者)以及数千个脑部MRI认知测试结果。
在这项研究结束时,我们希望更好地了解睡眠振荡在
大脑健康和临床上有用的大脑健康生物标志物。这些结果将有助于发展
促进大脑健康的干预措施。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring expertise in identifying interictal epileptiform discharges.
- DOI:10.1684/epd.2021.1409
- 发表时间:2022-06-01
- 期刊:
- 影响因子:2.3
- 作者:Harid, Nitish M;Jing, Jin;Hogan, Jacob;Nascimento, Fabio A;Ouyang, An;Zheng, Wei-Long;Ge, Wendong;Zafar, Sahar F;Kim, Jennifer A;Alice, D Lam;Herlopian, Aline;Maus, Douglas;Karakis, Ioannis;Ng, Marcus;Hong, Shenda;Yu, Zhu;Kaplan, Peter W;Cash, Sydney;Shafi, Mouhsin;Martz, Gabriel;Halford, Jonathan J;Westover, Michael Brandon
- 通讯作者:Westover, Michael Brandon
Automated Extraction of Stroke Severity from Unstructured Electronic Health Records using Natural Language Processing.
使用自然语言处理从非结构化电子健康记录中自动提取中风严重程度。
- DOI:10.1101/2024.03.08.24304011
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Fernandes,Marta;Westover,MBrandon;Singhal,AneeshB;Zafar,SaharF
- 通讯作者:Zafar,SaharF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brandon Westover其他文献
Michael Brandon Westover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brandon Westover', 18)}}的其他基金
Big Data and Deep Learning for the Interictal-Ictal-Injury Contiuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10761842 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10684096 - 财政年份:2022
- 资助金额:
$ 86.28万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10758996 - 财政年份:2022
- 资助金额:
$ 86.28万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10398908 - 财政年份:2018
- 资助金额:
$ 86.28万 - 项目类别:
Investigation of Sleep in the Intensive Care Unit (ICU-SLEEP)
重症监护病房睡眠调查(ICU-SLEEP)
- 批准号:
10372017 - 财政年份:2018
- 资助金额:
$ 86.28万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
9769180 - 财政年份:2018
- 资助金额:
$ 86.28万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8616877 - 财政年份:2014
- 资助金额:
$ 86.28万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
9313343 - 财政年份:2014
- 资助金额:
$ 86.28万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8908065 - 财政年份:2014
- 资助金额:
$ 86.28万 - 项目类别:
相似国自然基金
主动健康行为机制驱动的老年脑健康管理策略研究
- 批准号:72274201
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
基于人工智能的健康人和脑小血管病患者脑白质灌注定量研究
- 批准号:82071899
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
地震幸存儿童精神健康水平与其脑区激活关联研究
- 批准号:71904019
- 批准年份:2019
- 资助金额:19.5 万元
- 项目类别:青年科学基金项目
高速铁路复杂多元应用场景下的类脑智能健康管理体系架构与信息协同技术研究
- 批准号:
- 批准年份:2019
- 资助金额:231 万元
- 项目类别:联合基金项目
基于长寿人群探索“菌群-脑-肠轴”平衡的正性作用和机制
- 批准号:91849132
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:重大研究计划
相似海外基金
Kipiyecipakiciipe "coming home": Establishing clinical cultural neuroscience as a tool for understanding the role of traditional cultural engagement in mitigating substance misuse and disorder
Kipiyecipakiciipe“回家”:建立临床文化神经科学作为理解传统文化参与在减轻药物滥用和疾病中的作用的工具
- 批准号:
10740237 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Vitamin D and Healthy Aging: Establishing the Sled Dog Sentinel for the Circumpolar North
维生素 D 与健康老龄化:为北极圈建立雪橇犬哨兵
- 批准号:
10649356 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Emotional Cognition: Establishing Constructs and Neural-Behavioral Mechanisms in Older Adults with Depression (ENSURE)
情绪认知:在患有抑郁症的老年人中建立结构和神经行为机制(ENSURE)
- 批准号:
10667191 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Establishing an Atrophy-Based Functional Network Model as a Biomarker for Seizure-Onset Laterality
建立基于萎缩的功能网络模型作为癫痫发作偏侧性的生物标志物
- 批准号:
10751261 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Establishing that sleep spindle and slow wave deficits are present, are associated with cognitive dysfunction, and can be acutely manipulated in early course schizophrenia
确定睡眠纺锤波和慢波缺陷的存在,与认知功能障碍相关,并且可以在早期精神分裂症中进行急性控制
- 批准号:
10733615 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别: