The role of TMTC4, endoplasmic reticulum Ca2+ flux, and the unfolded protein response in noise-induced hearing loss
TMTC4、内质网 Ca2 通量和未折叠蛋白反应在噪声性听力损失中的作用
基本信息
- 批准号:10599869
- 负责人:
- 金额:$ 65.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmericanAnimal ModelApoptosisApoptoticAttenuatedBiochemicalBiological ModelsCa(2+)-Transporting ATPaseCalciumCaspaseCell DeathCell LineCell SurvivalCell modelCellsCellular StressChemicalsClinicalCochleaCritical PathwaysCytoplasmCytosolDataDevelopmentEarEndoplasmic ReticulumEquilibriumEventExhibitsFDA approvedFamilyFoundationsFunctional disorderGene ExpressionGenesGeneticGenetic ModelsGenetic TechniquesGenetic TranscriptionGerbilsGrantHair CellsHearingHeterozygoteHomeostasisHourHumanImageImpairmentInduction of ApoptosisKnock-outKnockout MiceLearningLinkLoudnessMacromolecular ComplexesMeasuresMediatingMediatorMessenger RNAModelingMusMutationNeonatalNoiseNoise-Induced Hearing LossPathway interactionsPatternPharmaceutical PreparationsPhasePhysiologicalPredispositionProcessProteinsPublic HealthPublishingResearch ProposalsRoleSeriesSignal TransductionSpecificityStimulusSupporting CellTestingTimeTranslational ResearchTraumaUp-RegulationVariantWild Type Mousearmcell typeclinically relevantconditional knockoutdeafdeafnessendoplasmic reticulum stressexperimental studygenetic deafnesshearing impairmentin vivoin vivo Modelinsightmultidisciplinarynoise exposurenormal hearingnovelototoxicitypharmacologicpositive allosteric modulatorpreventprevent hearing lossprogressive hearing lossprotein foldingrelease of sequestered calcium ion into cytoplasmresponsereuptakesegregationsoundtargeted treatmenttherapeutic developmenttherapeutic target
项目摘要
Noise-induced hearing loss (NIHL) is a significant public health problem, affecting nearly 40 million Americans.
We have made the exciting discovery that NIHL may be linked to the unfolded protein response (UPR), a
critical early response mechanism to cellular stress that has downstream effectors that can promote both cell
survival and apoptosis. In support of this, we have additionally identified and characterized a novel deafness
gene in mice, Tmtc4, which has also been recently identified as a potential deafness gene in a human family.
Mice in which Tmtc4 is genetically absent (Tmtc4 knockout (KO) mice) hear normally at the onset of hearing
but rapidly become deaf within 2 weeks and have markedly increased susceptibility to NIHL. We have found
that Tmtc4 is broadly expressed in cochlear hair cells and supporting cells, both of which degenerate over time
in Tmtc4 KO mice. We have shown that Tmtc4 is part of a macromolecular complex involved in clearing
calcium (Ca2+) from the cytoplasm into the endoplasmic reticulum (ER), and that cochlear cells from Tmtc4 KO
mice have impairments in intracellular Ca2+ homeostasis and dynamics. This impairment in Ca2+ management
leads to upregulation of the UPR and cell death in the Tmtc4 KO cochlea. In parallel with this genetic deafness
model of UPR dysregulation, we have found that NIHL in wild-type (WT) mice results in UPR upregulation
within 2 hours of noise exposure; this hearing loss could be prevented in part by treatment with one drug,
ISRIB, that specifically targets the UPR, or a second drug, CDN1163, that facilitates Ca2+ reuptake into the ER.
These preliminary findings strongly implicate the UPR as an early mediator of cellular stress in the cochlea,
upstream of other previously studied apoptotic mechanisms, and thus is a potential therapeutic target for a
wide range of acquired and genetic forms of hearing loss.
In this proposal, our specific aims are to investigate 1) how, in cell lines, TMTC4 dysfunction, including
human variants associated with hearing loss, affect ER Ca2+ flux and, subsequently, UPR activation; 2) how, in
the cochlea, noise-induced trauma in the form of hair-cell tip-link disruption and ER Ca2+ depletion activate the
UPR to induce hair-cell loss; and 3) how, in in vivo models of hearing loss, the UPR is modulated to give rise to
different patterns of hearing loss and hair-cell death. These Aims will be achieved using a multidisciplinary set
of physiologic, biochemical, pharmacologic, and genetic techniques including ER Ca2+ imaging, mRNA
transcriptional analysis, and genetic TMTC4 conditional knockout mice. Through these experiments, we will
gain valuable insight into the mechanisms by which ER Ca2+ flux and the UPR are involved in genetic and
noise-induced hearing loss, laying the foundation for development of targeted therapies for NIHL, a critical
unmet clinical need.
噪声引起的听力损失(NIHL)是一个重大的公共卫生问题,影响了近4000万美国人。
我们已经提出了令人兴奋的发现,即NIHL可能与未展开的蛋白质反应(UPR)有关
对具有下游效应子的细胞应激的关键早期反应机制,可以促进两个细胞
生存和凋亡。为此,我们还确定并表征了一种新颖的耳聋
小鼠中的基因TMTC4,该基因最近也被确定为人类家庭中潜在的耳聋基因。
TMTC4在遗传上不存在的小鼠(TMTC4敲除(KO)小鼠)正常听到听力开始时听到
但是在2周内迅速变得聋,并显着提高了对NIHL的敏感性。我们找到了
TMTC4在人工耳蜗细胞和支持细胞中广泛表达,这两个都随着时间而退化
在TMTC4 KO小鼠中。我们已经表明,TMTC4是与清除有关的大分子复合物的一部分
钙(Ca2+)从细胞质进入内质网(ER),并从TMTC4 KO中的耳蜗细胞
小鼠在细胞内Ca2+稳态和动力学方面有损害。 CA2+管理中的这种损害
导致TMTC4 KO耳蜗中UPR和细胞死亡的上调。与这种遗传耳聋并行
UPR失调的模型,我们发现野生型(WT)小鼠的NIHL导致UPR上调
在噪音暴露的2小时内;可以通过一种药物治疗来阻止这种听力损失,
伊斯里布(Isrib)专门针对UPR或第二种药物CDN1163,可促进Ca2+再摄取到ER中。
这些初步发现强烈暗示了UPR是耳蜗中细胞应激的早期介体,
其他先前研究的凋亡机制的上游,因此是A
听力损失的广泛获得和遗传形式。
在此提案中,我们的具体目的是研究1)在细胞系中,如何使用TMTC4功能障碍,包括
与听力丧失相关的人类变异,影响ER Ca2+通量,然后会影响UPR激活; 2)如何,在
耳蜗诱导的手电孔尖端连接的形式的耳蜗诱导的创伤和ER Ca2+耗竭激活
UPR诱导发丝损失; 3)在体内听力损失模型中,如何调制UPR以产生
听力损失和发胶死亡的不同模式。这些目标将使用多学科集合来实现
生理,生化,药理学和遗传技术,包括ER CA2+成像,mRNA
转录分析和遗传TMTC4条件基因敲除小鼠。通过这些实验,我们将
对ER Ca2+通量和UPR参与遗传和UPR的机制获得宝贵的见解
噪声引起的听力损失,为NIHL的靶向疗法开发奠定了基础,这是一个关键
未满足的临床需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan Chan其他文献
Dylan Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan Chan', 18)}}的其他基金
The role of TMTC4, endoplasmic reticulum Ca2+ flux, and the unfolded protein response in noise-induced hearing loss
TMTC4、内质网 Ca2 通量和未折叠蛋白反应在噪声性听力损失中的作用
- 批准号:
10357899 - 财政年份:2020
- 资助金额:
$ 65.99万 - 项目类别:
Pathophysiology of hearing loss associated with Connexin 26 dysfunction
与连接蛋白 26 功能障碍相关的听力损失的病理生理学
- 批准号:
9177758 - 财政年份:2015
- 资助金额:
$ 65.99万 - 项目类别:
Pathophysiology of hearing loss associated with Connexin 26 dysfunction
与连接蛋白 26 功能障碍相关的听力损失的病理生理学
- 批准号:
9023355 - 财政年份:2015
- 资助金额:
$ 65.99万 - 项目类别:
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Synergistically Target Mitochondria for Heart Failure Treatment
协同靶向线粒体治疗心力衰竭
- 批准号:
10584938 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别: