Use Explainable AI to Improve the Trust of and Detect the Bias of AI Models
使用可解释的人工智能来提高人工智能模型的信任度并检测其偏差
基本信息
- 批准号:10599655
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlzheimer&aposs disease related dementiaAmericanArtificial IntelligenceAwardBehavioral SciencesBioethical IssuesBiological MarkersDetectionDevelopmentElectronic Health RecordEnvironmentEthical IssuesEthicsHumanIndividualLinkMeasuresMethodsModelingParentsPhysical activityPublic HealthRaceRecommendationRiskRisk FactorsSubgroupTechniquesTechnologyTestingTrustVeteransWorkbasecardiorespiratory fitnessdeep learningdesignepidemiology studyfitnessimprovedmethod developmentparent grantrecruitrisk prediction modelsextool
项目摘要
Project Summary/Abstract
AD/ADRD is a growing national public health crisis as the number of Americans ≥65 years
is projected to double by 2050. Our parent grant was designed to measure cardiorespiratory
fitness (CRF) as a biomarker of physical activity in the most extensive epidemiological study in
nearly 1 million Veterans using VA’s world-class electronic health record and advanced artificial
intelligence technologies. The parent grant aims are (1) to determine the relationship between
CRF and incident AD/ADRD, taking into consideration a non-linear relationship and potential
interactions of CRF with other risk factors and (2) to define incremental CRF levels that are linked
to progressively lower risk of AD/ADRD, overall, and in subgroups by age, sex, and race. Our Aim
3 is to develop and validate a deep learning-based risk prediction model to determine the optimal
CRF level for individuals to achieve the lowest risk of AD/ADRD. Deep learning is a key Artificial
intelligence (AI) technique. AI has demonstrated great strides in the past decade. However, AI
models are often viewed as “black box” as they are difficult to explain. Understanding what an AI
model does is a prerequisite to the ethical use of AI, because stakeholders can’t trust a model or
detect the potentially intended and unintended biases associated with the development or
utilization of the model without understanding it. We believe that explainable AI is a powerful tool
to address the bioethics issues of trust and bias. The purpose of explainable AI is to make it
possible for human users to understand and trust the decisions or recommendations offered by
the AI model, and to debug and refine it. Specifically, this supplement will test the effect of AI
model explanation on trust and bias detection in a simulated environment by recruiting a set of
stakeholders and using a scenario-based approach. The potential broad impact of the proposed
work is that it will advance the ethical development and use of AI/ML in biomedical and behavioral
sciences using explainable AI methods.
项目摘要/摘要
随着美国人的数量≥65岁,AD/ADRD是日益增长的国家公共卫生危机
预计到2050年将翻一番。我们的父母赠款旨在衡量心肺
健身(CRF)是最广泛的流行病学研究中体育活动的生物标志物
使用VA的世界一流电子健康记录和高级艺术的近100万退伍军人
情报技术。父母赠款的目的是(1)确定
考虑到非线性关系和潜力,CRF和事件AD/ADRD
CRF与其他风险因素的相互作用以及(2)定义链接的增量CRF水平
逐渐降低按年龄,性别和种族的亚组降低AD/ADRD的风险。我们的目标
3是开发和验证基于深度学习的风险预测模型,以确定最佳
CRF水平使个人达到最低的AD/ADRD风险。深度学习是一个关键的人造
情报(AI)技术。在过去的十年中,AI取得了长足的进步。但是,AI
由于难以解释,通常将模型视为“黑匣子”。了解什么人AI
模型做是AI道德使用的先决条件,因为利益相关者无法相信模型或
检测与开发相关的潜在意图和意外偏见或
在不了解模型的情况下利用模型。我们认为可解释的AI是一种强大的工具
解决信任和偏见的生物伦理问题。可以解释的AI的目的是实现
人类用户可以理解和信任由
AI模型,并调试和完善它。具体而言,该补充将测试AI的效果
通过招募一组,在模拟环境中对信任和偏见检测的模型解释
利益相关者并使用基于方案的方法。提议的潜在广泛影响
工作是它将推动生物医学和行为中AI/ML的道德发展和使用
使用可解释的AI方法的科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter F. Kokkinos其他文献
CHANGES IN CARDIORESPIRATORY FITNESS STATUS REFLECT CHANGES IN CHRONIC HEART FAILURE INCIDENCE
- DOI:
10.1016/s0735-1097(23)02681-5 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Andreas E. Pittaras;Peter F. Kokkinos;Michail Doumas;Charalambos Grassos;Angelique Faselis;Belinda Gorsuch;Jonathan N. Myers - 通讯作者:
Jonathan N. Myers
MORTALITY & STROKE RISK ACCORDING TO CARDIORESPIRATORY FITNESS IN HYPERTENSIVES WITH ATRIAL FIBRILLATION
- DOI:
10.1016/s0735-1097(24)04328-6 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Andreas E. Pittaras;Charles Faselis;Charalambos Grassos;Michail Doumas;Carl J. Lavie;Peter F. Kokkinos - 通讯作者:
Peter F. Kokkinos
RENIN-ANGIOTENSIN SYSTEM INHIBITION, CARDIORESPIRATORY FITNESS, AND MORTALITY RISK IN HYPERTENSIVE PATIENTS
- DOI:
10.1016/s0735-1097(23)02197-6 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Peter F. Kokkinos;Charles Faselis;Jose D. Vargas;Carl J. Lavie;Belinda Gorsuch - 通讯作者:
Belinda Gorsuch
CARDIORESPIRATORY FITNESS, STATIN THERAPY AND MORTALITY RISK IN PATIENTS WITH DM2
- DOI:
10.1016/s0735-1097(23)02210-6 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Peter F. Kokkinos;Immanuel Babu Henry Samuel;Jonathan N. Myers;Jose D. Vargas;Andreas Pittaras;Carl J. Lavie;Angelique Faselis;Belinda Gorsuch;Pamela Ellen Karasik - 通讯作者:
Pamela Ellen Karasik
Statin therapy, fitness status and risk of type 2 diabetes in hypertensive patients
- DOI:
10.1016/j.jash.2016.03.073 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Puneet Narayan;Charles C. Faselis;Andreas Pittaras;Michael Doumas;Johnathan Myers;Eric Nylen;Peter F. Kokkinos - 通讯作者:
Peter F. Kokkinos
Peter F. Kokkinos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter F. Kokkinos', 18)}}的其他基金
Physical Fitness as an Objective Biomarker for AD/ADRD Risk Modification
体能作为 AD/ADRD 风险缓解的客观生物标志物
- 批准号:
10055393 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 32.3万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 32.3万 - 项目类别:
Preparing for Blood-Based Alzheimer’s Disease Biomarker Testing in Diverse Populations: Development of a Decision-Support Tool for Primary Care
为不同人群进行基于血液的阿尔茨海默病生物标志物测试做好准备:开发初级保健决策支持工具
- 批准号:
10722716 - 财政年份:2023
- 资助金额:
$ 32.3万 - 项目类别: