Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
基本信息
- 批准号:10599717
- 负责人:
- 金额:$ 58.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
Delayed cerebral ischemia (DCI) is the most devastating complication after aneurysmal
subarachnoid hemorrhage (aSAH) and has an incidence rate of 30%. Current practice relies on
intermittent assessment of neurological status and daily cerebral blood flow velocity (CBFV) by
Transcranial Doppler ultrasound (TCD) to guide medical management to prevent DCI. Only after
medical management fails, is endovascular treatment (EVT) including intraarterial vasodilator infusion
and/or intracranial angioplasty initiated. This reactive practice does not account for early predictors of
DCI and may miss the optimal EVT window at an early stage of DCI development before symptoms or
severe deviations from normal hemodynamics. The goal of this project is to develop algorithms to
predict DCI and related targets at an early stage in their development. An accurate prediction of DCI
will enable a more proactive strategy to prevent and treat the underlying cause of DCI.
The following three aims will be pursued towards the goal of the project: 1) Develop aSAH-specific
intracranial pressure (ICP) pulse-based cerebral arterial state index; 2) Develop and validate predictive
models of targets related to delayed cerebral ischemia after aSAH; 3) Conduct a prospective institution-
specific adaption and validation of the developed models.
Our DCI predictive algorithms only need data available in current clinical practice hence they can
be readily adopted. If validated, these algorithms will enable clinicians to monitor risk of DCI
continuously and to proactively deliver appropriate treatment. The proposed prospective study of
algorithm implementation and adaptation will well prepare future clinical trials to test the efficacy of
algorithm-informed interventions.
项目摘要
延迟的脑缺血(DCI)是动脉瘤后最具破坏性的并发症
亚蛛网膜下腔出血(ASAH),发病率为30%。当前的实践依赖
通过间歇性评估神经系统状况和每日脑血流速度(CBFV)
经颅多普勒超声(TCD)指导医疗管理以防止DCI。只有之后
医疗管理失败,是血管内治疗(EVT),包括内部血管扩张器输注
和/或颅内血管成形术。这种反应性实践不能解释
DCI和可能会在症状或
与正常血液动力学的严重偏差。该项目的目的是开发算法
在开发的早期阶段预测DCI和相关目标。 DCI的准确预测
将实现一种更加主动的策略,以防止和处理DCI的根本原因。
以下三个目标将实现该项目的目标:1)开发特定于ASAH
颅内压(ICP)基于脉冲的脑动脉态指数; 2)发展和验证预测
与近视后延迟脑缺血有关的靶标模型; 3)进行潜在的机构 -
开发模型的特定适应和验证。
我们的DCI预测算法只需要当前临床实践中可用的数据,因此可以
容易采用。如果得到验证,这些算法将使临床医生能够监视DCI的风险
连续并主动提供适当的治疗。拟议的前瞻性研究
算法实施和适应将为以后的临床试验做好准备,以测试
算法信息干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Xiao Hu的其他基金
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
- 批准号:1056110810561108
- 财政年份:2023
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:1060023910600239
- 财政年份:2020
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
- 批准号:1040637810406378
- 财政年份:2020
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:1021968310219683
- 财政年份:2020
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
- 批准号:1025134810251348
- 财政年份:2020
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:1022876810228768
- 财政年份:2020
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:97645119764511
- 财政年份:2018
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
- 批准号:92686869268686
- 财政年份:2015
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
- 批准号:89435678943567
- 财政年份:2015
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
ICP Elevation Alerting Based on a Predictive Model Hosting Platform
基于预测模型托管平台的 ICP 海拔警报
- 批准号:87327118732711
- 财政年份:2012
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
- 批准号:1068439910684399
- 财政年份:2023
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:1060227510602275
- 财政年份:2023
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Developing a computational platform for induced-fit and chemogenetic drug design
开发诱导拟合和化学遗传学药物设计的计算平台
- 批准号:1068074510680745
- 财政年份:2023
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:1064799110647991
- 财政年份:2023
- 资助金额:$ 58.03万$ 58.03万
- 项目类别:
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:1063494010634940
- 财政年份:2023
- 资助金额:$ 58.03万$ 58.03万
- 项目类别: