Assessing chronic pain using brain entropy mapping
使用脑熵图评估慢性疼痛
基本信息
- 批准号:10598873
- 负责人:
- 金额:$ 44.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAffectiveAnxietyAreaAttentionBig DataBiological MarkersBrainBrain imagingBrain regionChronicCognitiveComplexDataData AnalysesDiseaseEmotionalEnsureEntropyEvaluationFunctional Magnetic Resonance ImagingFutureGoalsHealthHumanImageIndividualIndividual DifferencesInterventionKnowledgeLeadLimbic SystemLocationMachine LearningMagnetic Resonance ImagingMapsMeasuresMental DepressionMethodsModelingMonitorMotorMotor CortexOpioidPainPain ResearchPain intensityPain interferencePain managementPaperParietal LobePerceptionPersonal SatisfactionPharmaceutical PreparationsPilot ProjectsPrefrontal CortexProblem SolvingProcessPsyche structureRegulationResearchResearch PersonnelRestRoleSensorimotor functionsSensorySeveritiesSpecificityStatistical Data InterpretationStressTestingTimeTranslational ResearchTraumaValidationWorkaccurate diagnosisattentional controlbasebiobankchronic painchronic pain patientcingulate cortexclinical paincognitive controlconnectomedeep learningdeep learning modeldiagnostic tooldriving forceexperiencehigh rewardhuman dataindexinginnovationmachine learning modelmultitaskneuroimagingneuromechanismneuroregulationnovelpain perceptionpain processingpredictive modelingprognostic toolsuccesstechnique developmenttherapy developmenttooltraumatic stresstreatment effect
项目摘要
Chronic pain is one of the most prevalent health problems in the world but remains poorly understood and
challenging to treat or manage. Two major barriers to progress are the unclear brain mechanism of chronic pain
and the complexity to model the multifaceted individual differences in pain experience, making it difficult to
accurately diagnose pain or monitor pain progression or treatment effects. To solve this problem, we need big
data and sophistic models. In this novel project, we will use the large (n~100000) UK Biobank (UKB) data and
deep machine learning (DL) to address the two critical problems in chronic pain research. We propose to use
resting state fMRI (rsfMRI) because pain perception and processing are ongoing in the brain which can be
characterized by the spontaneous brain activity measured by rsfMRI. We will focus on temporal coherence (TC)
of rsfMRI given its fundamental role in brain functions and our leading expertise in this research topic. We initiated
the concept of brain entropy (BEN) mapping as a tool to measure regional brain TC and our systematic work
has demonstrated the high test-retest stability, sensitivity to causal effects, specificity to focal stimulation,
different diseases, and drug states, as well as the potential as an intervention target through neuromodulations
or medication. We also showed that TC/BEN contains unique information that can not be characterized by other
neuroimaging measures. Aim 1 of this project will use TC/BEN mapping to find a potential chronic pain brain
circuit where the resting TC is positively correlated with chronic pain and individual differences of pain experience.
Aim 2 will use resting TC to build a multi-task DL-based pain prediction model. This project represents the first-
of-its-kind to study TC in chronic pain. It will bring new knowledge about chronic pain brain mechanisms (resting
TC alterations and associations) and a DL-based quantitative pain prediction model. Research rigor and
method/finding generalizability will be ensured by the use of by far the largest rsfMRI data. These high
innovations may lead to intervention targets for pain treatment or intervention development and a quantitative
tool to evaluate individual differences in pain or pain progression. Feasibility of this project is guaranteed by the
existing large data from UKB, our years of work experience in related research fields, the strong pilot data, and
the strong team expertise. Success of this pilot project will immediately lead to large size future important studies
in this new research direction.
慢性疼痛是世界上最普遍的健康问题之一,但仍然了解不足。
具有挑战性的治疗或管理。进步的两个主要障碍是慢性疼痛的不清楚的大脑机制
以及对痛苦体验中多方面的个体差异进行建模的复杂性,使得难以
准确诊断疼痛或监测疼痛进展或治疗效果。要解决这个问题,我们需要大大
数据和复杂模型。在这个新颖的项目中,我们将使用大型(N〜100000)英国生物银行(UKB)数据和
深度机器学习(DL)解决了慢性疼痛研究中的两个关键问题。我们建议使用
静止状态fMRI(RSFMRI)是因为大脑中正在进行疼痛感知和处理
由RSFMRI测量的自发脑活动的特征。我们将专注于时间连贯性(TC)
RSFMRI在大脑功能中的基本作用以及我们在该研究主题中的主要专业知识。我们发起了
大脑熵(BEN)映射的概念是测量区域大脑TC和我们的系统工作的工具
已经证明了高测试稳定性,对因果效应的敏感性,对局灶性刺激的特异性,
不同的疾病和药物状态以及通过神经调节的潜力作为干预措施
或药物。我们还表明,TC/Ben包含的独特信息无法由其他信息来表征
神经影像措施。该项目的目标1将使用TC/BEN映射找到潜在的慢性疼痛大脑
静息TC与慢性疼痛和疼痛经历的个体差异正相关的电路。
AIM 2将使用静息TC构建基于多任务DL的疼痛预测模型。这个项目代表了第一个
在慢性疼痛中研究TC的方法。它将带来有关慢性疼痛脑机制的新知识(休息
TC改变和关联)和基于DL的定量疼痛预测模型。研究严格和
通过使用最大的RSFMRI数据,将确保方法/查找可推广性。这些很高
创新可能会导致疼痛治疗或干预发展的干预目标和定量
评估疼痛或疼痛进展中个体差异的工具。该项目的可行性由
UKB的现有大数据,我们在相关研究领域的工作经验,强大的试点数据和
强大的团队专业知识。该试点项目的成功将立即导致大型未来重要的研究
在这个新的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ze Wang其他文献
Ze Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ze Wang', 18)}}的其他基金
Diversity Supplement to Brain entropy mapping in Alzheimer's Disease
阿尔茨海默病脑熵图谱的多样性补充
- 批准号:
10833739 - 财政年份:2021
- 资助金额:
$ 44.19万 - 项目类别:
Assessing ASL CBF as a biomarker for early Alzheimer's disease detection and disease progression
评估 ASL CBF 作为早期阿尔茨海默病检测和疾病进展的生物标志物
- 批准号:
10094475 - 财政年份:2019
- 资助金额:
$ 44.19万 - 项目类别:
Assessing ASL CBF as a biomarker for early Alzheimer's disease detection and disease progression
评估 ASL CBF 作为早期阿尔茨海默病检测和疾病进展的生物标志物
- 批准号:
9919512 - 财政年份:2019
- 资助金额:
$ 44.19万 - 项目类别:
Imaging data re-analysis for cocaine addiction
可卡因成瘾的影像数据重新分析
- 批准号:
8895475 - 财政年份:2014
- 资助金额:
$ 44.19万 - 项目类别:
Advanced methods for lesion-symptom mapping in aphasia
失语症病变症状映射的先进方法
- 批准号:
8117563 - 财政年份:2010
- 资助金额:
$ 44.19万 - 项目类别:
Advanced methods for lesion-symptom mapping in aphasia
失语症病变症状映射的先进方法
- 批准号:
7976163 - 财政年份:2010
- 资助金额:
$ 44.19万 - 项目类别:
SVM based group data analysis for drug abuse disorder ASL perfusion study
基于 SVM 的药物滥用障碍 ASL 灌注研究组数据分析
- 批准号:
7385333 - 财政年份:2007
- 资助金额:
$ 44.19万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别: