Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
基本信息
- 批准号:10597592
- 负责人:
- 金额:$ 62.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
Many aspects of cell biology as well as tissue physiology and the proper functioning of organisms are
essentially problems in material science. The structures and reactions that enable proper functioning of an
organism need to produce movements that are greater than those generated by random Brownian motion.
Cells need to build structures that are strong enough to resist gravitational forces as well as the mechanical
stresses that are generated by the same molecular structures and cellular assemblies that evolved to generate
movement and force. A related problem in soft matter is to understand the physical chemistry and dynamics of
the phospholipid bilayer that forms the cell membrane and orchestrates the signals generated at the cell
membrane and sent to the interior. This MIRA application combines two physical studies. One is focused on
the mechanical properties of purified biopolymer networks, intact cells, and whole tissues. The second
involves biophysical and biochemical characterizations of lipid bilayers containing anionic signaling lipids to
determine how these lipids distribute in the dynamic membrane and how this organization impacts their control
of intracellular protein targets.
We have characterized and worked with theorists to explain the striking nonlinear elastic response of
semi-flexible polymeric networks, with emphasis on the cytoskeletal intermediate filament protein vimentin, and
shown how these physical models help explain cell and tissue mechanism. We have also shown how important
viscoelastic properties of the substrate are to cell phenotypes and have developed new materials by which to
study them. In membrane studies, we collaborate with molecular dynamics experts to produce a coherent
model of the structures and motions of anionic signaling lipids such as PIP2 ranging from the atomic to the
molecular, to the macroscopic membrane scale. Biochemical and cellular studies show that the spatial
distribution of these lipids in bilayers impacts the way they control cytoskeletal actin assembly at the
cytoplasm/membrane interface.
Future work will build on these studies in three different areas. We will use our established models of
semiflexible networks to determine why vimentin networks, in contrast to those formed by stiffer polymers,
become stiffer when compressed, whereas crosslinked actin or microtubules become softer. We will also
extend our studies of extracellular polymers and cells to intracellular systems: cytoskeletal networks
containing membrane-bounded organelles, and crosslinked DNA or chromatin with the liquid particles and
organelles contained in the nuclear matrix. Here we will use our newly developed method to prepare intact
metabolically active nuclei surrounded by a thin layer or cytoplasm and a plasma membrane, and determine
how the perinuclear vimentin cage influences the structure and mechanical response of the nucleus.
Membrane studies will use our previous methods to alter PIP2 distribution in artificial bilayers and isolated cell
membranes, to study how similar changes in PIP2 distribution triggered by changes in intracellular Ca2+ or
cholesterol affect actin assembly in intact cells. We will also build on the MD simulations of relatively small
membrane systems to coarse grain simulations using the essential features identified by current all-atom
simulations. These will enable studies of systems that are large enough and followed for sufficient time to
produce phase transitions and nano-scale lipid clusters. These models will be used to predict how different
PIP2 binding proteins respond to lateral distribution of the lipid and test these ideas biochemically and in cells.
项目摘要
细胞生物学以及组织生理学的许多方面以及生物的正确功能是
本质上是材料科学问题。能够适当运作的结构和反应
有机体需要产生大于随机布朗运动产生的运动。
细胞需要建立足够强的结构,以抵抗重力以及机械
由相同的分子结构和细胞组件产生的应力
运动和力量。软物质中的一个相关问题是了解物理化学和动态
形成细胞膜并策划在细胞处产生的信号的磷脂双层
膜并发送到内部。该MIRA应用结合了两个物理研究。一个专注于
纯化的生物聚合物网络,完整细胞和整个组织的机械性能。第二个
涉及含有阴离子信号脂质的脂质双层的生物物理和生化特征
确定这些脂质如何在动态膜中分布以及该组织如何影响其控制
细胞内蛋白质靶标。
我们已经与理论家进行了表征和合作,以解释惊人的非线性弹性响应
半灵性聚合网络,重点是细胞骨架中间丝蛋白波形蛋白和
展示了这些物理模型如何有助于解释细胞和组织机制。我们还展示了多么重要
底物的粘弹性特性是细胞表型,并开发了新材料
研究他们。在膜研究中,我们与分子动力学专家合作生产连贯的
阴离子信号传导脂质的结构和运动的模型,例如PIP2,范围从原子到原子
分子到宏观膜量表。生化和细胞研究表明空间
这些脂质在双层中的分布会影响他们控制细胞骨架肌动蛋白组件的方式
细胞质/膜界面。
未来的工作将以三个不同领域的研究为基础。我们将使用我们既定的模型
半灵网络确定为什么波形蛋白网络与结实的聚合物形成的网络相反,
压缩时会变得更硬,而交联的肌动蛋白或微管变得更柔软。我们也会
将细胞外聚合物和细胞的研究扩展到细胞内系统:细胞骨架网络
包含膜结合的细胞器,并与液体颗粒交联的DNA或染色质,并
核基质中包含的细胞器。在这里,我们将使用我们新开发的方法准备完整
由薄层或细胞质和质膜包围的代谢活性核,并确定
核周蛋白笼如何影响细胞核的结构和机械响应。
膜研究将使用我们以前的方法来改变人工双层和孤立细胞中的PIP2分布
膜,研究在细胞内Ca2+或
胆固醇会影响完整细胞中的肌动蛋白组装。我们还将基于相对较小的MD模拟
使用当前全部原子确定的基本特征到粗粒模拟的膜系统
模拟。这些将实现对足够大的系统的研究,然后才有足够的时间
产生相变和纳米级脂质簇。这些模型将用于预测不同的
PIP2结合蛋白对脂质的横向分布反应,并在生化和细胞中测试这些思想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Paul A Janmey的其他基金
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:1079747710797477
- 财政年份:2020
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:1038012010380120
- 财政年份:2020
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:93317199331719
- 财政年份:2015
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:89624788962478
- 财政年份:2015
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:1058694110586941
- 财政年份:2014
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:1024047610240476
- 财政年份:2014
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:87589368758936
- 财政年份:2014
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:1070810410708104
- 财政年份:2014
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
- 批准号:81424868142486
- 财政年份:2011
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
- 批准号:1022701810227018
- 财政年份:2011
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:1076227310762273
- 财政年份:2023
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Pericyte reprogramming in fibrosis
纤维化中的周细胞重编程
- 批准号:1057852610578526
- 财政年份:2023
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:1058762710587627
- 财政年份:2023
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Determining the ultrastructural differences between dually and singly innervated dendritic spines and their changes following glutamate excitotoxicity using Cryo-Electron Tomography
使用冷冻电子断层扫描确定双重和单神经支配的树突棘之间的超微结构差异及其在谷氨酸兴奋性毒性后的变化
- 批准号:1067921410679214
- 财政年份:2023
- 资助金额:$ 62.66万$ 62.66万
- 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:1073836510738365
- 财政年份:2023
- 资助金额:$ 62.66万$ 62.66万
- 项目类别: