Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
基本信息
- 批准号:10597202
- 负责人:
- 金额:$ 57.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlgorithmsAttentionBehaviorBinge EatingBinge eating disorderBulimiaClinicalClinical TrialsCognitiveCognitive TherapyDataDiagnosticDisease remissionEatingEating DisordersEmotionalFoodFrequenciesFutureGoalsHealth TechnologyImpulsivityIndividualInformal Social ControlInterventionLearning SkillMachine LearningMethodsModalityMonitorNational Institute of Mental HealthOutcomeOutpatientsParticipantPathway interactionsPatientsPersonsRandomizedResearchResearch PrioritySymptomsSystemTechnologyTestingTherapeuticTimeTreatment outcomeWorkacceptability and feasibilityadaptive interventioncognitive benefitscomparison interventioncostdata sharingdesigndigitaldigital healthdigital interventiondiscrete timeeating pathologyeffective therapyexperiencefeasibility testingfollow-upimprovedloss of control over eatingmultiphase optimization strategyparticipant interviewpatient subsetspilot trialskill acquisitionskillstool
项目摘要
Project Summary
Binge eating (i.e., eating a large amount of food within a discrete time period accompanied by a sense of loss
of control over eating) is a key symptom of several eating disorders including bulimia nervosa (BN) and binge
eating disorder (BED). While cognitive behavioral therapy (CBT) can be an effective treatment approach for
binge eating, 40-50% of patients with BED and nearly 70% of patients with BN fail to achieve remission. A
growing body of research suggests that a key reason many patients may fail to benefit from CBT is suboptimal
rates of skill acquisition (i.e., the ability to successfully perform a skill learned in treatment) and utilization (i.e.,
the frequency with which a patient practices or employs therapeutic skills). Poor skill use and acquisition may
be particularly high among certain subsets of patients such as those who experience deficits in self-regulation.
This research suggests that treatment augmentations that could improve skill use and acquisition (particularly
for those who need additional support to succeed in CBT) could have high potential to enhance outcomes.
The NIMH has recently identified that digital health technologies (DHTs) have high potential to “promote
between-session skill practice/acquisition” and have selected this as a high priority research initiative (NOT-
MH-18-031). DHTs may be able to improve skill use and acquisition via several pathways, one of which is the
use of micro-interventions (i.e., short digital interventions delivered to people as they go about their daily lives).
Micro-interventions can range in complexity from something as simple as an automated reminder to practice a
therapeutic skill to advanced just-in-time adaptive intervention (JITAI) systems that use machine learning or
other advanced algorithms to deliver personally tailored interventions in specific moments of need. Recent
pilot work from our team supports the utility of JITAIs as a way to improve skill utilization and acquisition when
used as a treatment augmentation but did not compare JITAIs to more simple automated reminder micro-
interventions. Additionally, our pilot work also found that frequent monitoring of skill use was in and of itself a
surprisingly effective method for encouraging skill practice. These results suggest that the added complexity of
JITAIs may not be necessary for all individuals to experience benefit from a DHT augmentation.
The ability to develop maximally effective DHTs requires the use of a larger clinical trial that can help to identify
which digital components (and at which complexity) are most effective at improving skill use and acquisition as
well clinical outcomes. We propose to use a 2 x 3 full factorial design in which 264 individuals with BN or BED
are assigned to one of six treatment conditions, i.e., representing each permutation of self-monitoring
complexity (Skills-Monitoring On vs. Skills-Monitoring Off) and micro-intervention complexity (No Micro-
Interventions vs. Automated Reminder Messages vs. JITAIs) as an augmentation to CBT. Results of the
component analysis set up future work to evaluate an optimized DHT containing only effective components
(which can be expected to have superior target engagement, efficacy, efficiency and disseminability).
项目摘要
暴饮暴食(即,在离散的时间内吃大量食物
控制饮食)是多种饮食失调的关键症状
饮食失调(床)。虽然认知行为疗法(CBT)可以是一种有效的治疗方法
暴饮暴食,40-50%的床患者和近70%的BN患者无法缓解。一个
越来越多的研究表明,许多患者可能无法从CBT中受益的关键原因是次优的
技能获取率(即成功地执行治疗中学习的技能的能力)和利用(即
患者练习或员工治疗技能的频率)。技能使用和获取不良可能
在某些患者子集中,例如那些体验的患者尤其高。
这项研究表明,可以改善技能使用和获取的治疗增加(部分
对于那些需要额外支持才能成功获得CBT的人可能具有很高的潜力来增强结果。
NIMH最近确定数字健康技术(DHTS)具有“促进
会议之间的技能练习/获取”并将其选择为高优先研究计划(不是
MH-18-031)。 DHT可能能够通过多种途径来改善技能的使用和获取,其中之一是
使用微型干预(即,在日常生活中向人们提供短暂的数字干预措施)。
微型干预的复杂性范围从像自动提醒那样简单的事物到练习
使用机器学习或
其他高级算法,以在需要的特定时刻提供个人量身定制的干预措施。最近的
我们团队的飞行员工作支持Jitais的实用性,以改善技能利用和获取
用作增强治疗,但没有将Jitais与更简单的自动提醒进行比较
干预措施。此外,我们的飞行员工作还发现,经常对技能使用的监测本身就是
令人惊讶的有效方法来鼓励技能练习。这些结果表明
对于所有个人而言,可能并不需要从DHT增强中获得受益。
开发最大有效DHT的能力需要使用更大的临床试验,以帮助识别
哪些数字组件(以及哪些复杂性)最有效地改善技能使用和获取为
临床结果良好。我们建议使用2 x 3的完整阶乘设计,其中有264个BN或床的人
被分配给六个治疗条件之一,即表示每个自我监控的置换
复杂性(有关关闭技能和技能监测的技能监控)和微干预的复杂性(无微小
干预措施与自动提醒消息与Jitais)作为CBT的增强。结果
组件分析设置了未来的工作,以评估仅包含有效组件的优化DHT
(可以预期具有卓越的目标参与,效率,效率和传播性)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADRIENNE SARAH JUARASCIO其他文献
ADRIENNE SARAH JUARASCIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADRIENNE SARAH JUARASCIO', 18)}}的其他基金
Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
- 批准号:
10429134 - 财政年份:2022
- 资助金额:
$ 57.81万 - 项目类别:
Reward Re-Training: A new treatment to address reward imbalance during the COVID-19 pandemic
奖励再培训:解决 COVID-19 大流行期间奖励失衡的新疗法
- 批准号:
10218350 - 财政年份:2020
- 资助金额:
$ 57.81万 - 项目类别:
Optimizing Mindfulness and Acceptance-Based Treatments for Bulimia Nervosa and Binge Eating Disorder using a Factorial Design
使用析因设计优化针对神经性贪食症和暴食症的正念和基于接受的治疗
- 批准号:
10612758 - 财政年份:2020
- 资助金额:
$ 57.81万 - 项目类别:
Optimizing Mindfulness and Acceptance-Based Treatments for Bulimia Nervosa and Binge Eating Disorder using a Factorial Design
使用析因设计优化针对神经性贪食症和暴食症的正念和基于接受的治疗
- 批准号:
10356884 - 财政年份:2020
- 资助金额:
$ 57.81万 - 项目类别:
Using Continuous Glucose Monitoring to Detect and Intervene on Maintenance Factors for Transdiagnostic Binge Eating Pathology
使用连续血糖监测来检测和干预跨诊断性暴食病理学的维持因素
- 批准号:
9908791 - 财政年份:2019
- 资助金额:
$ 57.81万 - 项目类别:
Using Continuous Glucose Monitoring to Detect and Intervene on Maintenance Factors for Transdiagnostic Binge Eating Pathology
使用连续血糖监测来检测和干预跨诊断性暴食病理学的维持因素
- 批准号:
10023279 - 财政年份:2019
- 资助金额:
$ 57.81万 - 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
- 批准号:
10207616 - 财政年份:2018
- 资助金额:
$ 57.81万 - 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
- 批准号:
10457919 - 财政年份:2018
- 资助金额:
$ 57.81万 - 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
- 批准号:
9755423 - 财政年份:2018
- 资助金额:
$ 57.81万 - 项目类别:
Addressing Weight History to Improve Behavioral Treatments for Bulimia Nervosa
解决体重史以改善神经性贪食症的行为治疗
- 批准号:
8891738 - 财政年份:2015
- 资助金额:
$ 57.81万 - 项目类别:
相似国自然基金
基于自适应分级多层图注意力机制的疾病关联微生物预测模型及算法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于自适应分级多层图注意力机制的疾病关联微生物预测模型及算法研究
- 批准号:62272064
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
注意力引导的复杂场景精确室内定位关键算法研究
- 批准号:62102459
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
注意力引导的复杂场景精确室内定位关键算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向电力系统安全评估的深度稀疏图注意力卷积集成模型和增量学习算法研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
- 批准号:
10429134 - 财政年份:2022
- 资助金额:
$ 57.81万 - 项目类别:
A preclinical integrated PET/EPR imaging system
临床前集成 PET/EPR 成像系统
- 批准号:
10032946 - 财政年份:2020
- 资助金额:
$ 57.81万 - 项目类别:
Depression Treatment to Reduce the Excess Diabetes Risk of People with Depression and Prediabetes
抑郁症治疗可降低抑郁症和糖尿病前期患者的过度糖尿病风险
- 批准号:
10092154 - 财政年份:2020
- 资助金额:
$ 57.81万 - 项目类别:
A preclinical integrated PET/EPR imaging system
临床前集成 PET/EPR 成像系统
- 批准号:
10394307 - 财政年份:2020
- 资助金额:
$ 57.81万 - 项目类别: