Mechanisms of Salmonella-mediated disruption of colonization resistance in the inflamed gut
沙门氏菌介导的炎症肠道定植抵抗破坏机制
基本信息
- 批准号:10595200
- 负责人:
- 金额:$ 47.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsAnaerobic BacteriaAspartateBacteriaBacteroidesBacteroides thetaiotaomicronCatabolismCitric Acid CycleCytolysisDataEcosystemEnterobacteriaceaeEpithelial CellsEscherichia coliFluorescence MicroscopyFumaratesGastroenteritisGastrointestinal tract structureGenesGenetic TranscriptionGerm-FreeGrowthIn VitroInfectionInflammationIntestinesInvadedMeasuresMediatingMetabolicMetabolismMusNitratesNutrientOxidantsPathogenesisPathway interactionsPhasePhysiologyPlayProductionPropionatesReactive Oxygen SpeciesReporterResearchRespirationRoleSalmonellaSalmonella typhimuriumSourceStudy modelsTaxonTestingType III Secretion System PathwayUnited StatesVirulenceVolatile Fatty AcidsWorkantimicrobialcolonization resistancecommensal bacteriacommensal microbesdiarrheal diseaseenteric pathogenessaysexperimental studygut inflammationgut microbiotahost microbiotain vivoinnovationintestinal epitheliummicrobialmicrobiotamouse modelmutantnon-typhoidal Salmonellanovelpathogenpathogenic bacteriaresident commensalsresponse
项目摘要
PROJECT SUMMARY
Infection with non-typhoidal Salmonella is 1 of 4 most prevalent global causes of diarrheal disease. In
the United States, Salmonella enterica serovar Typhimurium (S. Tm) infection results in 1.35 million illnesses
annually. To infect the gastrointestinal tract, S. Tm contends with the resident commensal bacteria (gut
microbiota). The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization
resistance), partially via the production of inhibitory metabolites such as short-chain fatty acids (SCFA) (e.g.,
propionate) and nutrient sequestration (e.g., amino acids). Thus, successful bacterial pathogens must possess
mechanisms to survive in the competitive ecosystem of the gut. S. Tm uses a Type III secretion system (T3SS-
I) to invade intestinal epithelial cells (EICs) and induce intestinal inflammation. As a result, S. Tm disrupts the
host-microbiota ecosystem and overcomes microbiota-mediated colonization resistance by using inflammation-
derived electron acceptors such as fumarate and nitrate for anaerobic respiration. However, the mechanisms
that drive Salmonella-induced disruption of the microbial ecosystem in the gut and how this disruption affects
host physiology and promotes pathogen expansion remain largely unknown. In this application, we will elucidate
the mechanisms by which S. Tm-induced intestinal inflammation enables the pathogen to (i) overpower SCFA-
mediated colonization resistance and (ii) gain access to microbiota-derived aspartate for anaerobic fumarate
respiration. Our robust preliminary data obtained from in vitro studies and murine models demonstrate that the
pathogen may use propionate metabolism to fine-tune virulence through modulation of T3SS-I expression. Our
studies further reveal that S. Tm-induced inflammation causes an increase in Bacteroides-derived aspartate in
the intestinal lumen and that aspartate conversion into fumarate fuels S. Tm fumarate respiration in vitro and in
vivo. Our preliminary data support our central hypothesis that pathogen-induced intestinal inflammation allows
S. Tm to overcome mechanisms of colonization resistance established by the microbiota by (i) downregulating
invasion of EICs via catabolism of Bacteroides-derived propionate and (ii) promoting the release of aspartate by
commensal Bacteroides, which S. Tm uses to outcompete commensal Enterobacteriaceae. To test this
hypothesis, we will define the impact of propionate catabolism on S. Tm pathogenesis in the inflamed gut (Aim
1). Aim 2 will identify the mechanism by which intestinal inflammation promotes increased aspartate availability
in the inflamed gut. In Aim 3, we will determine how aspartate enables S. Tm to overcome colonization resistance
by Enterobacteriaceae, a bacterium taxon that plays a critical role in protecting the host against S. Tm infection.
If successful, this research will establish critical conceptual advances in understanding how enteric pathogens
exploit the gut microbiota for expansion during gastroenteritis. Expected findings will provide a deeper
understanding of a novel mechanism used by this bacterial pathogen to evade the intestinal microbiota and
establish infection.
项目概要
非伤寒沙门氏菌感染是全球最常见的腹泻病 4 种原因之一。在
美国,肠沙门氏菌鼠伤寒血清型 (S.Tm) 感染导致 135 万人患病
每年。为了感染胃肠道,S.Tm 与常驻共生菌(肠道菌)进行斗争。
微生物群)。肠道微生物群通过限制肠道病原体扩张(定植
耐药性),部分是通过产生抑制性代谢物,例如短链脂肪酸(SCFA)(例如,
丙酸盐)和养分封存(例如氨基酸)。因此,成功的细菌病原体必须具备
在肠道竞争性生态系统中生存的机制。 S.Tm使用III型分泌系统(T3SS-
I)侵入肠上皮细胞(EIC)并诱发肠道炎症。结果,S.Tm 扰乱了
宿主微生物生态系统,并通过使用炎症克服微生物介导的定植抗性
衍生的电子受体,例如用于无氧呼吸的富马酸盐和硝酸盐。然而,这些机制
驱动沙门氏菌引起的肠道微生物生态系统破坏以及这种破坏如何影响
宿主生理学和促进病原体扩张仍然很大程度上未知。在此应用中,我们将阐明
S.Tm 诱导的肠道炎症使病原体能够 (i) 压倒 SCFA- 的机制
介导的定植抗性和(ii)获得微生物群衍生的天冬氨酸用于厌氧富马酸盐
呼吸。我们从体外研究和小鼠模型中获得的可靠初步数据表明
病原体可能利用丙酸代谢通过调节 T3SS-I 表达来微调毒力。我们的
研究进一步表明,S. Tm 诱导的炎症会导致拟杆菌衍生的天冬氨酸增加
肠腔和天冬氨酸转化为富马酸在体外和体内为 S.Tm 富马酸呼吸提供燃料
体内。我们的初步数据支持我们的中心假设,即病原体诱导的肠道炎症允许
S. Tm 通过 (i) 下调来克服微生物群建立的定植抗性机制
通过类杆菌衍生的丙酸盐的分解代谢入侵 EIC,以及 (ii) 通过促进天冬氨酸的释放
共生拟杆菌,S. Tm 利用它来战胜共生肠杆菌科细菌。为了测试这个
假设,我们将定义丙酸分解代谢对发炎肠道中 S.Tm 发病机制的影响(目的
1).目标 2 将确定肠道炎症促进天冬氨酸可用性增加的机制
在发炎的肠道中。在目标 3 中,我们将确定天冬氨酸如何使 S.Tm 克服定植抗性
肠杆菌科是一种细菌分类群,在保护宿主免受链球菌感染方面发挥着关键作用。
如果成功,这项研究将在理解肠道病原体如何
在胃肠炎期间利用肠道微生物群进行扩张。预期的发现将提供更深入的
了解这种细菌病原体用来逃避肠道微生物群的新机制,以及
建立感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariana Xavier Byndloss其他文献
Mariana Xavier Byndloss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariana Xavier Byndloss', 18)}}的其他基金
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10345474 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10549324 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Mechanisms of Salmonella-mediated disruption of colonization resistance in the inflamed gut
沙门氏菌介导的炎症肠道定植抵抗破坏机制
- 批准号:
10707174 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Role of sulfide in oral microbiota-host interactions that promote periodontitis
硫化物在促进牙周炎的口腔微生物群与宿主相互作用中的作用
- 批准号:
10828614 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
The Role of Glutamine Metabolism for P. gingivalis-Induced Non-Canonical Autophagy in Epithelial Cells
谷氨酰胺代谢对牙龈卟啉单胞菌诱导的上皮细胞非典型自噬的作用
- 批准号:
10656268 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
The Role of Glutamine Metabolism for P. gingivalis-Induced Non-Canonical Autophagy in Epithelial Cells
谷氨酰胺代谢对牙龈卟啉单胞菌诱导的上皮细胞非典型自噬的作用
- 批准号:
10537625 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Impact of the C. difficile small acid soluble proteins on spore physiology
艰难梭菌小酸溶蛋白对孢子生理学的影响
- 批准号:
10533031 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
L-Arg availability affects the physiological state of porphyromonas gingivalis.
L-精氨酸的可用性影响牙龈卟啉单胞菌的生理状态。
- 批准号:
10649693 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别: