The Role of Glutamine Metabolism for P. gingivalis-Induced Non-Canonical Autophagy in Epithelial Cells
谷氨酰胺代谢对牙龈卟啉单胞菌诱导的上皮细胞非典型自噬的作用
基本信息
- 批准号:10537625
- 负责人:
- 金额:$ 4.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino AcidsAnaerobic BacteriaAntioxidantsAutophagocytosisAutophagosomeBacteriaBiogenesisBiologyCell physiologyCellsChronicChronic DiseaseComplexCouplingCritical PathwaysDataDegradation PathwayDependenceDevelopmentDiseaseElementsEndoplasmic ReticulumEnvironmentEpithelialEpithelial CellsEventFellowshipFosteringFoundationsGTP-Binding Protein alpha Subunits, GsGene ProteinsGenerationsGingivaGlutamineGlutathioneGoalsHomeostasisHumanImmuneImpairmentInfectionKnowledgeLifeLipidsMaintenanceMediatingMembraneMetabolicMetabolic PathwayMetabolismMicrotubule-Associated ProteinsMolecularMucous MembraneOralOral cavityOral healthOral mucous membrane structureOxidation-ReductionOxidative StressPathway interactionsPeriodontitisPorphyromonas gingivalisProductionProtein IsoformsPublishingRecyclingRegulationResearchRoleRouteScientistSecureTestingTimeTrainingUltraviolet RaysVacuoleVariantamino acid metabolismantimicrobialcellular pathologycombatdysbiosisglutathione peroxidasemicrobialmicroorganismmolecular phenotypenew therapeutic targetnovelnovel therapeuticsoral biologypathobiontpathogenradiation resistancerecruittherapeutically effective
项目摘要
Growing evidence underlines that Glutamine (Gln) metabolism can influence key metabolic and autophagic
cellular events. Porphyromonas gingivalis (P.g) is a major periodontopathic, fastidious, pathobiont and
successful colonizer of gingival mucosa, which has recently been identified to induce a special form of
autophagy in human gingival epithelial cells (GECs). While GECs function as an intrinsically important first line
of immune defense of the gingiva, GECs can be exploited by P.g for securing a successful persistence niche in
the oral mucosa and a potential systemic dissemination route. Despite the growing evidence pinpointing that
altered Gln metabolism can contribute to cellular pathologies, knowledge gaps remain regarding how host Gln
metabolism could be influenced by bacteria to regulate host redox homeostasis and potentially promote
bacterial survival in the GECs. Recently, we discovered that P.g steadily increases robust Glutathione (GSH)
production in GECs to combat host-mediated oxidative stress-driven pathogen clearance. Our novel findings,
for the first time, show that P.g infection alters host Gln metabolism, a component of GSH synthesis, in GECs.
In addition, we recently demonstrated that P.g induces a pro-bacterial form of autophagy in GECs, where
Endoplasmic Reticulum-rich (ER)/Microtubule-associated protein 1A/1B-light chain 3 (LC3) double membrane
autophagosomes act as replicative niches for P.g and protect the bacteria from antimicrobial degradation
pathways. Our novel data shows that the biogenesis and maintenance of these P.g-containing
autophagosomes is dependent on the critical redox molecule, Glutathione Peroxidase 1 (GpX1). The
dependency on GpX1 can be markedly altered by increasing free Gln levels in GECs' cellular environment.
Thus, our overarching hypothesis for this proposal is that P.g alters host Gln metabolism in GECs to
maintain host redox homeostasis and specifically contributes to the biogenesis of a GpX1-driven, pro-bacterial
form of autophagy. Two Specific Aims are proposed to test this hypothesis. Aim 1 will characterize the
phenotypic molecular events occurring during P.g infection that specifically associate with host cell Gln
metabolism and the host cell redox state, allowing for the intracellular survival of P.g in GECs. Aim 2 will
mechanistically determine the molecular interactome involved in P.g-induced autophagy through the
modulation of host Gln metabolism in GECs. These collectively will identify what elements of the Gln metabolic
pathways are critical for the autophagic survival of P.g in GECs, and will elucidate the specific molecular
machineries involved in pro-bacterial autophagy driven by changes in host Gln metabolism upon P.g infection.
Overall, this proposal will contribute to the identification of novel targeted therapeutic strategies to control the
chronic intracellular colonization of P.g in the oral mucosa and beyond. Receiving the F31 Fellowship for this
proposal will further the applicant's research goals, critically contribute to her training in the field of Oral
Biology, and will foster her unique development as an oral health academic scientist.
越来越多的证据强调谷氨酰胺 (Gln) 代谢可以影响关键的代谢和自噬
细胞事件。牙龈卟啉单胞菌 (P.g) 是一种主要的牙周病、挑剔、致病生物,
牙龈粘膜的成功定植者,最近已被鉴定可诱导一种特殊形式的
人牙龈上皮细胞(GEC)中的自噬。虽然 GEC 发挥着本质上重要的第一线作用
牙龈的免疫防御,GEC 可以被 P.g 用来确保成功的持久性生态位
口腔粘膜和潜在的全身传播途径。尽管越来越多的证据表明
谷氨酰胺代谢的改变可能导致细胞病理,但关于宿主谷氨酰胺如何发挥作用的知识差距仍然存在
新陈代谢可能受到细菌的影响来调节宿主氧化还原稳态并可能促进
GEC 中细菌的存活率。最近,我们发现 P.g 稳步增加强效谷胱甘肽 (GSH)
GEC 中的生产可对抗宿主介导的氧化应激驱动的病原体清除。我们的新发现,
首次表明,P.g 感染会改变 GEC 中宿主 Gln 代谢(GSH 合成的一个组成部分)。
此外,我们最近证明 P.g 在 GEC 中诱导亲细菌形式的自噬,其中
富含内质网 (ER)/微管相关蛋白 1A/1B-轻链 3 (LC3) 双膜
自噬体充当 P.g 的复制生态位并保护细菌免遭抗菌药物降解
途径。我们的新数据表明这些含 P.g 的生物发生和维持
自噬体依赖于关键的氧化还原分子谷胱甘肽过氧化物酶 1 (GpX1)。这
通过增加 GEC 细胞环境中的游离 Gln 水平,可以显着改变对 GpX1 的依赖性。
因此,我们对该提议的总体假设是 P.g 改变 GEC 中的宿主 Gln 代谢,
维持宿主氧化还原稳态,特别有助于 GpX1 驱动的亲细菌的生物发生
自噬的形式。提出了两个具体目标来检验这一假设。目标 1 将描述
P.g感染期间发生的与宿主细胞Gln特异性相关的表型分子事件
代谢和宿主细胞氧化还原状态,允许 P.g 在 GEC 中存活。目标2将
通过机制确定参与 P.g 诱导自噬的分子相互作用组
GEC 中宿主 Gln 代谢的调节。这些共同将确定谷氨酰胺代谢的哪些元素
途径对于 GEC 中 P.g 的自噬存活至关重要,并将阐明特定的分子
参与亲细菌自噬的机制是由 P.g 感染后宿主 Gln 代谢的变化驱动的。
总体而言,该提案将有助于确定新的靶向治疗策略来控制
P.g 在口腔粘膜及其以外的慢性细胞内定植。为此获得 F31 奖学金
提案将进一步推进申请人的研究目标,对她在口腔领域的培训做出重要贡献
生物学,并将促进她作为口腔健康学术科学家的独特发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bridgette Frances Wellslager其他文献
Bridgette Frances Wellslager的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bridgette Frances Wellslager', 18)}}的其他基金
The Role of Glutamine Metabolism for P. gingivalis-Induced Non-Canonical Autophagy in Epithelial Cells
谷氨酰胺代谢对牙龈卟啉单胞菌诱导的上皮细胞非典型自噬的作用
- 批准号:
10656268 - 财政年份:2022
- 资助金额:
$ 4.76万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Role of sulfide in oral microbiota-host interactions that promote periodontitis
硫化物在促进牙周炎的口腔微生物群与宿主相互作用中的作用
- 批准号:
10828614 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
The Role of Glutamine Metabolism for P. gingivalis-Induced Non-Canonical Autophagy in Epithelial Cells
谷氨酰胺代谢对牙龈卟啉单胞菌诱导的上皮细胞非典型自噬的作用
- 批准号:
10656268 - 财政年份:2022
- 资助金额:
$ 4.76万 - 项目类别:
Impact of the C. difficile small acid soluble proteins on spore physiology
艰难梭菌小酸溶蛋白对孢子生理学的影响
- 批准号:
10533031 - 财政年份:2022
- 资助金额:
$ 4.76万 - 项目类别:
Mechanisms of Salmonella-mediated disruption of colonization resistance in the inflamed gut
沙门氏菌介导的炎症肠道定植抵抗破坏机制
- 批准号:
10595200 - 财政年份:2022
- 资助金额:
$ 4.76万 - 项目类别:
L-Arg availability affects the physiological state of porphyromonas gingivalis.
L-精氨酸的可用性影响牙龈卟啉单胞菌的生理状态。
- 批准号:
10649693 - 财政年份:2022
- 资助金额:
$ 4.76万 - 项目类别: