Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
基本信息
- 批准号:10594266
- 负责人:
- 金额:$ 14.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlzheimer&aposs DiseaseAwardBehaviorBiologyBrainBrain DiseasesBrain regionBrain scanClinicalCognitionCommunicationComplexComputer softwareDataData AnalysesData CollectionDedicationsDetectionDiagnosisEducationEducational workshopEnvironmentExhibitsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsGrowthHeadHumanImageImage AnalysisIndividualInterdisciplinary StudyJournalsKnowledgeLeadMedicineMentorsMethodologyMethodsModelingMorphologic artifactsMotionNeurologicNeurosciencesParticipantPathway AnalysisPatient-Focused OutcomesPredispositionPreventionResearchResearch ActivityResearch DesignResearch Project GrantsScanningScientistSeriesSlideStatistical Data InterpretationStatistical MethodsStructureSystemTechniquesTimeTrainingTraining ActivityTraining ProgramsVariantVocational GuidanceWorkbiomarker identificationbrain dysfunctioncareercomputational neurosciencedetection limitearly detection biomarkersexperimental studyforestfunctional MRI scanimprovedinfancyinnovationinsightinterestmarkov modelmemberneuroimagingnovelresponseskillsstudy populationsymposiumtheoriestool
项目摘要
My objective for the K25 award is to establish myself as an independent neuroimaging statistician, with
expertise in whole-brain network analyses and an integral member of multidisciplinary research teams devoted
to addressing diseases of the brain. Attaining these goals will require didactic training and research guidance.
Research
We will develop new methodology to improve whole-brain dynamic connectivity analyses of normal and
abnormal brain function, which is vital for understanding various brain disorders, such as Alzheimer’s Disease,
and may help identify biomarkers and inform early prevention and treatment. Previous studies are largely
based on one average network constructed using data from an entire brain scan (i.e., static connectivity), but
emerging evidence suggests network topology exhibits meaningful variations on the second to minute scale,
creating a gap in understanding unless these variations are quantified. While several methods have been
proposed to address this new direction in the field, there does not yet exist a unifying framework that
accurately estimates whole-brain networks, as well as the dynamics of network change across a functional
magnetic resonance imaging (fMRI) experiment, while a) accounting for variables of interest and motion-
induced artifacts and b) allowing for individual estimates of dynamics. The novel methods proposed here will
address these needs and provide a set of tools for future dynamic brain network analysis research. This
research, along with my proposed training plan, will facilitate my progression toward becoming an independent
neuroimaging statistician with expertise in brain network analysis.
Training
The proposed training program involves four components: 1) career guidance and neuroscience and network
analysis training from a mentoring committee; 2) an educational component to establish fundamental
knowledge in computational neuroscience and image analysis; 3) performing innovative research using the
skills gained from the proposed training plan and; 4) participating in the exchange of knowledge and ideas with
other statisticians and neuroscientists through workshops, conferences, seminar series, and journal clubs. The
training will enable me to shift from an early career statistician to an established, independent, neuroimaging
statistician with expertise in whole-brain network analyses. The training in computational neuroscience and
image analysis will allow me to become a multidisciplinary research team scientist dedicated to studying the
human brain. The growth gained through this 5-year period will lead to a skill set, and a confidence, that allows
me to be more well-versed in the neuroscience and biology behind the data I am analyzing. This will ultimately
lead to more effective communication with neuroscientists and clinicians, improved study design, more
informed statistical analyses, and a more comprehensive interpretation of the results in my future work.
我对K25奖的目标是将自己确立为独立的神经影像学家
全脑网络分析方面的专业知识和跨学科研究团队不可或缺的成员
解决大脑的疾病。实现这些目标将需要教学培训和研究指导。
研究
我们将开发新的方法来改善正常和正常的全脑动态连通性分析
异常的大脑功能,这对于理解各种脑部疾病(例如阿尔茨海默氏病)至关重要
并可能有助于识别生物标志物并为早期的预防和治疗提供信息。以前的研究主要是
基于一个使用来自整个大脑扫描的数据构建的平均网络(即静态连接性),但
新兴证据表明,网络拓扑表现出在第二至微小尺度上的有意义的变化,
除非量化这些变化,否则会在理解中造成差距。虽然已经有几种方法
提议解决该领域的新方向,尚未存在一个统一的框架
准确估计全脑网络,以及跨功能上的网络变化的动力学
磁共振成像(fMRI)实验,而a)考虑了感兴趣的变量和运动 -
诱导的伪影和b)允许单个动力学估计。这里提出的新方法将
满足这些需求,并为将来的动态大脑网络分析研究提供一组工具。这
研究以及我提出的培训计划,将有助于成为独立的发展
神经影像学家在大脑网络分析方面具有专业知识。
训练
拟议的培训计划涉及四个组成部分:1)职业指导和神经科学和网络
心理委员会的分析培训; 2)建立基本的教育部分
计算神经科学和图像分析方面的知识; 3)使用
从建议的培训计划中获得的技能; 4)与
其他统计学家和神经科学家通过研讨会,会议,开创性系列和期刊俱乐部。
培训将使我能够从早期的职业统计学家转变为已建立的独立,神经影像
统计学家在全脑网络分析中具有专业知识。计算神经科学和
图像分析将使我成为一个多学科研究团队的科学家,致力于研究
人脑。在这个五年期间的增长将导致技能和信心,以允许
我要对我分析的数据背后的神经科学和生物学变得更加精通。最终将
导致与神经科学家和临床医生进行更有效的沟通,改进的研究设计,更多
知情的统计分析,以及对我未来工作中结果的更全面的解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Marie Shappell其他文献
Heather Marie Shappell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别:
ADRC Consortium for Clarity in ADRD Research Through Imaging
ADRC 联盟通过成像来明确 ADRD 研究
- 批准号:
10803806 - 财政年份:2023
- 资助金额:
$ 14.45万 - 项目类别: