Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
基本信息
- 批准号:10563184
- 负责人:
- 金额:$ 34.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-04 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdjuvantAffectClinicalDataData CollectionData ScienceDependenceDoseEligibility DeterminationEnrollmentFundingHealthcare SystemsIndividualInfluenza vaccinationInterventionInvestmentsKnowledgeMachine LearningMethodologyMethodsModelingModernizationNursing HomesOutcomeParticipantPerformancePoliciesPopulationRandomizedRandomized, Controlled TrialsRecombinantsResearchResearch DesignResearch PersonnelSample SizeStatistical MethodsStructureTarget PopulationsUncertaintyUnited States National Institutes of Healthcluster trialdeep learningdesignflexibilityfollow-upinfluenza virus vaccineinterestmachine learning methodnovelnovel strategiesoptimal treatmentspractice settingrandom forestrandomized trialresponseroutine careroutine practicesimulationsupport vector machinetooltreatment effecttreatment strategyvaccination strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Cluster trials are the study design of choice when interventions are best applied at the group level and when
exposure of one individual may affect the outcomes of other individuals in the same cluster. Cluster trials are
increasingly embedded within large health care systems, allowing the use of routinely collected data to
increase research efficiency. There is concern, however – and this proposal provides supportive evidence –
that randomized clusters are not representative the target populations seen in routine care. When treatment
effects vary over factors that influence trial participation, treatment effects from the trial cannot be directly
applied to real-world target populations of substantive interest. Thus, even in well-designed cluster trials,
selective participation can lead to bias in drawing causal inferences about the target population. Given the
increasing number of cluster trials being conducted, investigators need rigorous methods for generalizing
findings from cluster trials to target populations that address selective participation bias and can account for
multiple data science challenges, including stochastic dependence among observations in the same cluster;
availability of randomized trial data from only a few clusters or from clusters with relatively small sample sizes;
lack of knowledge of predictors of trial participation and the outcome, when candidate covariates often exceed
the number of available clusters and necessitate the use of flexible machine learning approaches; and missing
outcome data. In response to Notice of Special Interest NOT-LM-19-003, we propose novel, domain-
independent, reusable causal and statistical methods to address these data-science challenges and to
increase the ability of cluster trials to inform clinical and policy decisions by eliminating bias due to selective
participation when estimating average treatment effects and when estimating the optimal covariate-dependent
treatment strategy. We will evaluate the methods in realistic simulation studies and in empirical analyses using
data from 3 large-scale cluster trials of influenza vaccination strategies in U.S. nursing homes.
项目摘要/摘要
群集试验是当最好在小组级别和何时采用干预措施时的研究设计
一个人的暴露可能会影响同一集群中其他人的结果。集群试验是
越来越多地嵌入大型医疗保健系统中,允许使用常规收集的数据
但是,人们担心 - 该提案提供了支持的证据 -
那个随机簇不能代表常规护理中看到的目标种群。治疗时
影响因影响试验参与的因素而异,试验的治疗效果不能直接
应用于现实世界中具有实质性关注的目标人群。即使在精心设计的集群试验中,
选择性参与会导致偏向对目标人群的因果推断。鉴于
进行的集群试验数量增加,研究人员需要严格的方法来概括
集群试验的发现到目标人群,以解决选择性参与偏见,并可以考虑
多个数据科学挑战,包括同一群集中观察结果之间的随机依赖性;
仅来自几个群集或样本量相对较小的簇的随机试验数据;
缺乏对试验参与预测因素和结果的了解,当候选协变量经常超过
可用的群集的数量以及必要的使用灵活的机器学习方法;和失踪
结果数据。为了回应特殊兴趣的通知,而不是-19-003,我们提出了新颖的领域 -
独立,可重复使用的因果和统计方法,以应对这些数据科学挑战,并
通过消除选择性的偏见来提高集群试验为临床和政策决策提供信息的能力
当估计平均治疗效果以及估计最佳协变量依赖性时参与
治疗策略。我们将评估使用现实的仿真研究和使用经验分析的方法
来自美国护士住宅中的3个大规模疫苗接种策略的大规模集群试验的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issa J. Dahabreh其他文献
Causal Inference About the Effects of Interventions From Observational Studies in Medical Journals.
关于医学期刊观察研究干预效果的因果推论。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Issa J. Dahabreh;Kirsten Bibbins - 通讯作者:
Kirsten Bibbins
Adjusting for Selection Bias Due to Missing Eligibility Criteria in Emulated Target Trials
调整由于模拟目标试验中缺少资格标准而导致的选择偏差
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Luke Benz;Rajarshi Mukherjee;Issa J. Dahabreh;Rui Wang;David Arterburn;Catherine Lee;Heidi Fischer;Susan Shortreed;S. Haneuse - 通讯作者:
S. Haneuse
A COMPARISON OF METHODS TO EVALUATE THE REAL-WORLD SAFETY AND EFFECTIVENESS OF THE PERCUTANEOUS MICROAXIAL LEFT VENTRICULAR ASSIST DEVICE IN CARDIOGENIC SHOCK
- DOI:
10.1016/s0735-1097(22)02113-1 - 发表时间:
2022-03-08 - 期刊:
- 影响因子:
- 作者:
Zaid Almarzooq;Yang Song;Issa J. Dahabreh;Ajar Kochar;Enrico Ferro;Eric Alexander Secemsky;Robert W. Yeh - 通讯作者:
Robert W. Yeh
Issa J. Dahabreh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issa J. Dahabreh', 18)}}的其他基金
Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
- 批准号:
10362886 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别:
Use of Registries, Claims and Health System Data to Enhance the Evaluation of Cardiovascular Devices
使用注册、索赔和健康系统数据来加强心血管设备的评估
- 批准号:
10734959 - 财政年份:2017
- 资助金额:
$ 34.01万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Prostate Specific Anti-androgen Therapy for Localized Prostate Cancer
前列腺特异性抗雄激素疗法治疗局限性前列腺癌
- 批准号:
10760194 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Regulatory Mechanisms Addressing Diabetic Vasculopathy
解决糖尿病血管病变的调节机制
- 批准号:
10718850 - 财政年份:2023
- 资助金额:
$ 34.01万 - 项目类别:
Low cost, Broad Spectrum Cancer Vaccine Targeting Human Papillomavirus
针对人乳头瘤病毒的低成本、广谱癌症疫苗
- 批准号:
10650067 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别:
Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
- 批准号:
10362886 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别:
Brain Networks of Turning Performance with Aging and Stroke
衰老和中风影响转向性能的大脑网络
- 批准号:
10536898 - 财政年份:2022
- 资助金额:
$ 34.01万 - 项目类别: