Use of Registries, Claims and Health System Data to Enhance the Evaluation of Cardiovascular Devices
使用注册、索赔和健康系统数据来加强心血管设备的评估
基本信息
- 批准号:10734959
- 负责人:
- 金额:$ 77.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:BenchmarkingBostonCardiovascular DiseasesCardiovascular systemCaringCerebrumClinicalClinical TrialsCommunitiesCommunity PracticeComplementDataData AnalysesData SetDevice ApprovalDevice SafetyDevicesDimensionsEffectivenessElderlyElectronic Health RecordEligibility DeterminationEthicsEvaluationFutureGoalsHealth systemHealthcare SystemsHeartHeart ValvesInstitutionLinkMassachusettsMedicalMedical DeviceMethodologyMethodsMitral ValveMorbidity - disease rateObservational StudyOutcomePatient CarePatient RepresentativePatient-Centered CarePatientsPhysiciansPopulationProviderPublic HealthQuasi-experimentRegistriesResearchResearch DesignRiskSafetySample SizeScienceSelection BiasStentsTarget PopulationsTimeUnited StatesVariantWomanWorkabdominal aortaanalytical methodblack patientcardiovascular risk factorclinical careclinical practiceclinically relevantdata registrydata resourcedesignfollow-uphealth goalshigh riskimprovedinnovationinstrumentmechanical circulatory supportmortalityneighborhood disadvantagenovelpatient populationpatient subsetspost-marketprogramsprovider adoptionrandomized trialrepairedresponsesocial disparitiestooltreatment effecttrial design
项目摘要
PROJECT SUMMARY/ABSTRACT
There is an urgent need to develop and implement more efficient approaches to evaluate
cardiovascular devices in representative patient populations. Data from registries, health care systems,
and payers, often include detailed clinical baseline information and longitudinal outcomes on a large number of
patients representative of those cared for in clinical practice. However, the most commonly performed non-
randomized evaluations using these data have high risk of bias due to a number of methodological challenges,
including unmeasured differences between patients receiving different treatments (confounding) and
misalignment of treatment eligibility, treatment initiation and beginning of follow up (selection bias). Thus, there
is great enthusiasm for exploiting newer study design and analysis strategies that can more closely
approximate the results of a desired but yet-to-be-performed randomized trial, while gaining the efficiency and
representativeness of using data routinely collected in the course of patient care. Applying state-of-the-science
methods to diverse and rich datasets may identify specific populations with different responses to device
treatment - a key step in the ability to deliver individualized patient-centered care. In this renewal application,
we will continue to pursue the overarching goal of developing innovative approaches to enhance the
efficiency, fidelity and generalizability of cardiovascular device evaluation through the analysis of
unique multidimensional linked datasets. In Aim 1, we will apply new methods to transport inferences about
treatment effects from pivotal randomized trials of high-risk cardiovascular devices to new target populations
representative of patients seen in contemporary practice. In Aim 2, we will evaluate the safety and
effectiveness of high-risk cardiovascular devices through application of the target trial framework, a set of
conceptual and practical tools for designing observational emulations of randomized trials that is well suited to
overcome common forms of selection bias (e.g., immortal time bias) in cardiovascular device comparisons. In
Aim 3, we will apply quasi-experimental methods to evaluate the safety and effectiveness of these devices,
including instrumental variable and instrumented difference-in-difference designs. In each of the three aims, we
will develop and apply methods to examine subgroups of patients under-represented in trials, specifically
women, Black patients, and patients from socially disadvantaged communities. This research will inform the
safety and effectiveness of several cardiovascular devices that have not been well studied, provide important
clinical information to practicing physicians in the community, and create new standards for the future
regulatory evaluation of medical devices using transportability, observational, and quasi-experimental
approaches to complement standard randomized trials.
项目摘要/摘要
迫切需要开发和实施更有效的方法来评估
代表性患者人群中的心血管设备。来自注册表,医疗保健系统的数据,
和付款人,通常包括大量详细的临床基线信息和纵向结果
代表在临床实践中受到照顾的患者。但是,最常见的非 -
使用这些数据的随机评估由于许多方法上的挑战而具有偏见的高风险,
包括接受不同治疗(混杂)和
治疗资格的错位,治疗起始和随访的开始(选择偏差)。因此,那里
非常热情利用新的研究设计和分析策略,这些策略可以更紧密地
在获得效率和
在患者护理过程中通常收集的数据的代表性。应用最先进的科学
多种数据集和丰富数据集的方法可以识别具有不同响应设备的特定人群
治疗 - 提供个性化以患者为中心的护理的能力的关键步骤。在此续签应用中,
我们将继续追求开发创新方法以增强的总体目标
通过分析,心血管装置评估的效率,保真度和概括性
唯一的多维链接数据集。在AIM 1中,我们将采用新方法来运输有关的推论
高危心血管设备的关键随机试验到新目标人群的治疗效果
当代实践中看到的患者的代表。在AIM 2中,我们将评估安全性和
通过应用目标试验框架,高风险心血管设备的有效性,一组
设计随机试验的观察性仿真的概念和实用工具,非常适合
在心血管装置比较中克服常见的选择偏见(例如不朽的时间偏见)。在
AIM 3,我们将采用准实验方法来评估这些设备的安全性和有效性,
包括仪器变量和仪器差异差异设计。在三个目标中的每个目标中,我们
将开发和应用方法来检查试验中代表性不足的患者的亚组,特别是
妇女,黑人患者和来自社会不利社区的患者。这项研究将告知
几种尚未进行精心研究的心血管设备的安全性和有效性,提供重要的
向社区中的医生提供临床信息,并为未来创建新的标准
使用可运输性,观察性和准实验的医疗设备进行监管评估
补充标准随机试验的方法。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing Baseline Data From Registries With Trials: Evidence From the CathPCI Registry and DAPT Study.
- DOI:10.1016/j.jcin.2021.03.065
- 发表时间:2021-06-28
- 期刊:
- 影响因子:0
- 作者:Butala NM;Faridi KF;Secemsky EA;Song Y;Curtis J;Gibson CM;Brindis R;Shen C;Yeh RW
- 通讯作者:Yeh RW
SCOT-HEART: Does it live up to the PROMISE?
SCOT-HEART:它兑现了承诺吗?
- DOI:10.1016/j.jcct.2019.01.008
- 发表时间:2019
- 期刊:
- 影响因子:5.4
- 作者:Strom,JordanB;Shen,Changyu;Yeh,RobertW
- 通讯作者:Yeh,RobertW
Comparability of Event Adjudication Versus Administrative Billing Claims for Outcome Ascertainment in the DAPT Study: Findings From the EXTEND-DAPT Study.
- DOI:10.1161/circoutcomes.120.006589
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Faridi KF;Tamez H;Butala NM;Song Y;Shen C;Secemsky EA;Mauri L;Curtis JP;Strom JB;Yeh RW
- 通讯作者:Yeh RW
Geographic Patterns of Growth for Transcatheter Aortic Valve Replacement in the United States.
美国经导管主动脉瓣置换术增长的地理模式。
- DOI:10.1161/circulationaha.119.040788
- 发表时间:2019
- 期刊:
- 影响因子:37.8
- 作者:Kundi,Harun;Faridi,KamilF;Wang,Yun;Wadhera,RishiK;Valsdottir,LindaR;Popma,JeffreyJ;Kramer,DanielB;Yeh,RobertW
- 通讯作者:Yeh,RobertW
Rural-Urban Disparities In All-Cause Mortality Among Low-Income Medicare Beneficiaries, 2004-17.
- DOI:10.1377/hlthaff.2020.00420
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Loccoh E;Joynt Maddox KE;Xu J;Shen C;Figueroa JF;Kazi DS;Yeh RW;Wadhera RK
- 通讯作者:Wadhera RK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issa J. Dahabreh其他文献
Causal Inference About the Effects of Interventions From Observational Studies in Medical Journals.
关于医学期刊观察研究干预效果的因果推论。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Issa J. Dahabreh;Kirsten Bibbins - 通讯作者:
Kirsten Bibbins
Adjusting for Selection Bias Due to Missing Eligibility Criteria in Emulated Target Trials
调整由于模拟目标试验中缺少资格标准而导致的选择偏差
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Luke Benz;Rajarshi Mukherjee;Issa J. Dahabreh;Rui Wang;David Arterburn;Catherine Lee;Heidi Fischer;Susan Shortreed;S. Haneuse - 通讯作者:
S. Haneuse
A COMPARISON OF METHODS TO EVALUATE THE REAL-WORLD SAFETY AND EFFECTIVENESS OF THE PERCUTANEOUS MICROAXIAL LEFT VENTRICULAR ASSIST DEVICE IN CARDIOGENIC SHOCK
- DOI:
10.1016/s0735-1097(22)02113-1 - 发表时间:
2022-03-08 - 期刊:
- 影响因子:
- 作者:
Zaid Almarzooq;Yang Song;Issa J. Dahabreh;Ajar Kochar;Enrico Ferro;Eric Alexander Secemsky;Robert W. Yeh - 通讯作者:
Robert W. Yeh
Issa J. Dahabreh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issa J. Dahabreh', 18)}}的其他基金
Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
- 批准号:
10362886 - 财政年份:2022
- 资助金额:
$ 77.69万 - 项目类别:
Methods for generalizing inferences from cluster randomized controlled trials to target populations
将整群随机对照试验的推论推广到目标人群的方法
- 批准号:
10563184 - 财政年份:2022
- 资助金额:
$ 77.69万 - 项目类别:
相似国自然基金
αβ珠蛋白融合基因—Lepore-Boston的结构及表达调控
- 批准号:39370398
- 批准年份:1993
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 77.69万 - 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
$ 77.69万 - 项目类别:
Neighborhoods and health across the life course: Early life inequities in food insecurity, diet quality, and chemical exposures
整个生命过程中的社区和健康:生命早期在粮食不安全、饮食质量和化学品接触方面的不平等
- 批准号:
10746303 - 财政年份:2023
- 资助金额:
$ 77.69万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 77.69万 - 项目类别: