Regulation of Vascular Smooth Muscle Cell Phenotype by a Novel Isoform of Glucose-6-Phosphate Dehydrogenase
新型葡萄糖-6-磷酸脱氢酶异构体对血管平滑肌细胞表型的调节
基本信息
- 批准号:10561265
- 负责人:
- 金额:$ 70.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAfricanArteriesBiologyBlood VesselsCardiovascular systemCarotid ArteriesCause of DeathCell NucleusCessation of lifeChromatinCoronary ArteriosclerosisCoronary arteryDNADNA BindingDNA MethylationDNA Modification MethylasesDNase-I FootprintingDevelopmentDiseaseEnzymesEpigenetic ProcessEvolutionExperimental DesignsFAIRE sequencingFrequenciesGene ExpressionGene Expression ProfileGenesGenetic PolymorphismGenetic TranscriptionGlucosephosphate DehydrogenaseGoalsGrowthHeart failureHigh Fat DietHistonesHumanHypertensionIndividualInflammatoryInjuryKnowledgeLaboratoriesLifeLinkLysineMechanicsMedicineMetabolicMetabolic syndromeMetabolismMethylationModelingModernizationModificationMolecular WeightNADPNuclearObesityOxidation-ReductionPathogenesisPathogenicityPathologyPhenotypePredispositionPropertyProtein IsoformsProteinsPulmonary artery structureRattusRegulationRepressionRoleSignal TransductionSingle Nucleotide PolymorphismSmooth Muscle MyocytesSwitch GenesTechnologyTestingVariantVascular DiseasesVascular Smooth MuscleVascular remodelingarterial stiffnessdesignepigenomeepigenomicsgain of functionglucose metabolismhistone methylationloss of functionmetabolomicsmigrationmyocardinnew therapeutic targetnovelpreventprime editingpromoterthrombotictranscription factor
项目摘要
Vascular diseases continue to be a major cause of death in the US and worldwide. It has been proposed that metabolic
reprogramming and increased glucose-6-phosphate dehydrogenase (G6PD) activity and expression contribute to the
pathogenesis of fatal angioproliferative vasculopathies. Moreover, some studies suggest individuals with a loss-of-
function G6PD (Mediterranean or African) variant – S188F (G6PDS188F; Type A-; severe deficiency) or N126D
(G6PDN126D; Type A; mild deficiency) nonsynonymous single nucleotide polymorphism – have lower frequencies of
coronary artery disease. However, G6PD-driven pathogenic and G6PD variant-associated protective mechanisms
affecting vascular diseases remain elusive. We therefore propose to determine potential mechanisms, driven by a newly
discovered G6PD isoform in the nucleus of vascular smooth muscle cells (VSMCs), that contribute to pathogenic large
artery stiffness and remodeling. Based on strongly supporting preliminary results, we hypothesized that nuclear G6PD
is a modulator of epigenetic modifiers and is a transcription regulator in VSMCs. Consequently, the loss-of-function
G6PD (S188F, N126D) variants block maladaptive modifications of the epigenome, reducing large artery elastance and
remodeling elicited by obesity/metabolic syndrome and balloon-injury. We will test this hypothesis in three specific
aims. In Aim 1, we will test the hypothesis that G6PD and/or G6PD-coordinated redox in the nucleus controls the
expression and activity of epigenetic modifiers (DNA methyltransferases (DNMT) and DNA (TET) and histone
(JARID) demethylases) and transcription of genes that encode proteins involved in regulating the differentiation
(contractile) and dedifferentiation (pro-inflammatory, -thrombotic, and -proliferative) phenotypes in VSMCs. In Aim 2,
we will determine whether loss-of-function G6PD variants detach from epigenetic modifiers to increase DNA
methylation, suppress histone3-lysine4 trimethylation, and reduce transcription of genes that confer maladaptive (pro-
inflammatory, -thrombotic, and -proliferative) properties to VSMCs. In Aim 3, we will determine whether G6PD variant
rats express fewer maladaptive epigenetic (histone3-lysine4 trimethylation) changes and develop less large artery
elastance (stiffness) and vascular remodeling than wild-type rats fed a high-fat diet (a model of obesity/metabolic
syndrome) or subjected to carotid artery balloon-injury. The results from gain-of-function and loss-of-function studies
of this project will reveal the direct effect of G6PD on gene expression associated with pathogenic vascular remodeling
and large artery stiffness, which lead to heart failure and death. We foresee two significant impacts on vascular biology:
[1] linkage of heretofore unknown G6PD-dependent subcellular redox in the nucleus directly to the fundamental
transcriptional mechanics and gene transcription in vascular pathobiology and [2] development of new treatments
targeting redox signaling to reduce large artery stiffness and remodeling.
有人提出,血管疾病仍然是美国和全世界死亡的主要原因。
重编程和增加的葡萄糖-6-磷酸脱氢酶(G6PD)活性和表达有助于
此外,一些研究表明个体患有致命性血管增生性血管病。
功能 G6PD(地中海或非洲)变体 – S188F(G6PDS188F;A 型;严重缺乏)或 N126D
(G6PDN126D;A 型;轻度缺乏)非同义单核苷酸多态性 – 频率较低
然而,G6PD 驱动的致病机制和 G6PD 变异相关的保护机制。
因此,我们建议确定由新的机制驱动的潜在机制。
在血管平滑肌细胞 (VSMC) 的细胞核中发现了 G6PD 亚型,该亚型有助于致病性大
基于有力支持的初步结果,我们追求核 G6PD。
是表观遗传修饰剂的调节剂,也是所检测的 VSMC 的转录调节剂,即功能丧失。
G6PD(S188F、N126D)变异体阻止表观基因组的适应不良修饰,降低大动脉弹性和
肥胖/代谢综合征和球囊损伤引起的重塑我们将在三个具体方面检验这一假设。
在目标 1 中,我们将检验细胞核中 G6PD 和/或 G6PD 协调的氧化还原控制的假设。
表观遗传修饰剂(DNA 甲基转移酶 (DNMT) 和 DNA (TET) 以及组蛋白)的表达和活性
(JARID)去甲基酶)和编码参与调节分化的蛋白质的基因转录
在目标 2 中,VSMC 的(收缩性)和去分化(促炎性、血栓性和增殖性)表型。
我们将确定功能丧失的 G6PD 变体是否与表观遗传修饰剂分离以增加 DNA
甲基化,抑制组蛋白 3-赖氨酸 4 三甲基化,并减少导致适应不良的基因转录(亲-
在目标 3 中,我们将确定 G6PD 是否存在变异。
大鼠表观遗传不良(组蛋白 3-赖氨酸 4 三甲基化)变化较少,大动脉发育较少
与喂食高脂肪饮食的野生型大鼠相比,弹性(僵硬)和血管重塑(肥胖/代谢模型)
综合征)或遭受颈动脉球囊损伤。功能获得和功能丧失研究的结果。
该项目将揭示 G6PD 对与致病性血管重塑相关的基因表达的直接影响
和大动脉僵硬,这会导致心力衰竭和死亡。我们预见到对血管生物学的两个重大影响:
[1] 迄今为止未知的细胞核内 G6PD 依赖性亚细胞氧化还原与基础的直接联系
血管病理学中的转录机制和基因转录以及[2]新疗法的开发
针对氧化还原信号传导以减少大动脉僵硬度和重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SACHIN A GUPTE其他文献
SACHIN A GUPTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SACHIN A GUPTE', 18)}}的其他基金
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7743739 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7372575 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7667028 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
8204769 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of Vascular Smooth Muscle Calcium by NADPH Redox
NADPH 氧化还原对血管平滑肌钙的调节
- 批准号:
7546523 - 财政年份:2008
- 资助金额:
$ 70.55万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Integrative and trans-ethnic study to understand psoriasis associated signals
了解银屑病相关信号的综合和跨种族研究
- 批准号:
10657973 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Leveraging GWAS Findings to Map Variants and Identify Novel Effector Genes for Alcohol-Related Traits
利用 GWAS 研究结果绘制变异图谱并识别酒精相关特征的新效应基因
- 批准号:
10657933 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Functional genomics of GxE in cardiovascular disease: BPA, phthalates and their interactions with gene regulation
GxE 在心血管疾病中的功能基因组学:BPA、邻苯二甲酸盐及其与基因调控的相互作用
- 批准号:
10337539 - 财政年份:2022
- 资助金额:
$ 70.55万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 70.55万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 70.55万 - 项目类别: