Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
基本信息
- 批准号:10684722
- 负责人:
- 金额:$ 18.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingActinsAddressAdenine Nucleotide TranslocaseAdoptedAnimalsAntsBasic ScienceBehaviorBiosensorBrainCaenorhabditis elegansCell LineCell SurvivalCellsChemicalsClinical ResearchClinical TrialsCompensationDataDevelopmental ProcessDistant MetastasisEventExcisionExperimental ModelsExtracellular MatrixExtracellular Matrix DegradationF-ActinFluorescenceGenesGeneticGlioblastomaGoalsHumanImmunologic SurveillanceIn VitroInvadedLocalized Malignant NeoplasmMalignant NeoplasmsMatrix MetalloproteinasesMetabolicMissionMitochondriaModelingNeoplasm MetastasisOutputOxidative StressPathway interactionsPenetrationPharmacologic SubstancePolymersPorosityProductionProteinsProteolysisPublic HealthRNA InterferenceReporterResearchRoleSiteSliceTestingTherapeuticTimeTissuesTumor Cell InvasionTumor-DerivedUnited States National Institutes of HealthWorkbrain tissuecancer cellcancer invasivenesscancer therapyclinically relevantcombinatorialconfocal imagingefficacy testinggenetic analysisimprovedin vivoin vivo Modelinhibitorknock-downlive cell imagingmutantneoplastic celloverexpressionpatient prognosispolymerizationpreventprogramsresponsetissue culturetumortumor progression
项目摘要
Tumor cell invasion through extracellular matrix (ECM) facilitates localized and distant cancer spread,
which is the most lethal aspect of cancer. The ability of cells to switch between distinct invasive modes,
termed plasticity or adaptation, when faced with varying physical or chemical challenges underlies the
inability to develop anti-invasive therapies. Identifying targetable adaptive responses to halt invasion has
been hindered by the lack of experimental models to identify, characterize, and test the loss of key
molecules that facilitate plasticity. To address this critical need we have focused on matrix
metalloproteinases (MMPs), which have been targeted in extensive clinical trials because of their strong
association with cancer and role in degrading ECM. Anti-MMP therapies, however, have been ineffective,
likely because of invasive plasticity. To identify and understand how invasive cells adapt to MMP loss,
we are using the in vivo model of anchor cell (AC) invasion in C. elegans. We found that the genetic
removal of MMPs results in an adaptive invasion response where instead of ECM degradation, the AC
increases F-actin polymerization to forcefully penetrate ECM. Using MMP-null animals, we performed the
first synergistic invasion screen to pinpoint genes that promote adaptive AC invasion and identified the
mitochondrial ATP/ADP translocase, ant-1.1, as the strongest candidate. ANTs have multiple
mitochondrial functions (ATP/ADP exchange, mitophagy, mitochondrial dynamics) and the ANT-1.1
protein is highly enriched in AC mitochondria that polarize to the site of ECM invasion. ANT-1.1
knockdown in MMP-null animals prevents adaptive F-actin formation and inhibits AC invasion. The overall
objective of this application is to (Aim 1) elucidate how ant-1.1 promotes adaptive invasion after MMP
loss in C. elegans, and (Aim 2) determine if the concurrent loss of MMP and ANT activity in a 4-D
organotypic brain slice model of glioblastoma (GBM) blocks invasive activity. Our central hypothesis is
that understanding how ANT-1.1 functions in mitochondrial for adaptive invasion will facilitate targeting
ANTs along with MMPs in a clinically relevant brain slice model of GBM invasion. To understand how
ANT-1.1 promotes adaptive invasion, will use genetic analysis, fluorescence reporters, metabolic
biosensors, cell-specific metabolic analysis, and quantitative live-cell imaging. We will then use
quantitative confocal imaging to directly test the efficacy of combined ANT and MMP therapies on GBM
cell invasion. We expect to establish how ANT-1.1 functions within mitochondria to facilitate adaptive
invasion (possibly through multiple functions) and to develop combined therapeutic approaches to
effectively block GBM invasion. These contributions will be significant as they will reveal how invasive
cells adaptively invade in the absence of MMPs and establish a pipeline that can be used to identify and
characterize synergistic invasive targets resulting in more effective cancer therapies.
肿瘤细胞通过细胞外基质(ECM)侵袭促进局部和远处的癌症扩散,
这是癌症最致命的方面。细胞在不同侵入模式之间切换的能力,
当面临不同的物理或化学挑战时,称为可塑性或适应性
无法开发抗侵入疗法。确定有针对性的适应性反应以阻止入侵
由于缺乏识别、表征和测试密钥丢失的实验模型而受到阻碍
促进可塑性的分子。为了满足这一关键需求,我们重点关注矩阵
金属蛋白酶(MMP),因其强大的作用而成为广泛的临床试验的目标
与癌症的关联以及在降解 ECM 中的作用。然而,抗 MMP 疗法无效,
可能是因为侵入可塑性。为了识别和了解侵袭细胞如何适应 MMP 损失,
我们正在使用秀丽隐杆线虫锚细胞(AC)入侵的体内模型。我们发现遗传
MMP 的去除会导致适应性入侵反应,其中 AC 不是 ECM 降解,而是
增加 F-肌动蛋白聚合以强力渗透 ECM。使用 MMP 缺失的动物,我们进行了
首次协同入侵筛选,以查明促进适应性 AC 入侵的基因,并确定
线粒体 ATP/ADP 转位酶 ant-1.1 是最强的候选者。 ANT 有多个
线粒体功能(ATP/ADP 交换、线粒体自噬、线粒体动力学)和 ANT-1.1
蛋白质在 AC 线粒体中高度富集,极化至 ECM 入侵部位。 ANT-1.1
MMP 缺失动物中的敲低可防止适应性 F-肌动蛋白形成并抑制 AC 入侵。整体
本申请的目的是(目标 1)阐明 ant-1.1 如何促进 MMP 后的适应性入侵
线虫中的损失,以及(目标 2)确定 4-D 中 MMP 和 ANT 活性是否同时损失
胶质母细胞瘤(GBM)的器官型脑切片模型可阻止侵袭性活动。我们的中心假设是
了解 ANT-1.1 在线粒体中如何发挥适应性入侵功能将有助于靶向
临床相关的 GBM 侵袭脑切片模型中的 ANT 和 MMP。要了解如何
ANT-1.1促进适应性入侵,将使用遗传分析、荧光报告基因、代谢
生物传感器、细胞特异性代谢分析和定量活细胞成像。然后我们将使用
定量共聚焦成像直接测试 ANT 和 MMP 联合疗法对 GBM 的疗效
细胞侵袭。我们期望确定 ANT-1.1 在线粒体内如何发挥作用,以促进适应性
入侵(可能通过多种功能)并开发联合治疗方法
有效阻断GBM侵袭。这些贡献将意义重大,因为它们将揭示侵入性的方式
细胞在没有 MMP 的情况下适应性地侵入并建立可用于识别和
表征协同侵入靶标,从而产生更有效的癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Catherine Kelley其他文献
Laura Catherine Kelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Catherine Kelley', 18)}}的其他基金
Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
- 批准号:
10430819 - 财政年份:2022
- 资助金额:
$ 18.44万 - 项目类别:
Understanding the Role of MMPs in Basement Membrane Breaching In vivo
了解 MMP 在体内基底膜破裂中的作用
- 批准号:
8398457 - 财政年份:2012
- 资助金额:
$ 18.44万 - 项目类别:
Understanding the Role of MMPs in Basement Membrane Breaching In vivo
了解 MMP 在体内基底膜破裂中的作用
- 批准号:
8554766 - 财政年份:2012
- 资助金额:
$ 18.44万 - 项目类别:
相似国自然基金
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 18.44万 - 项目类别:
Molecular Mechanisms Underlying Cytoneme Formation by Sonic Hedgehog-Producing Cells
Sonic Hedgehog 产生细胞形成细胞因子的分子机制
- 批准号:
10678288 - 财政年份:2023
- 资助金额:
$ 18.44万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 18.44万 - 项目类别:
Defining WASp-dependent pathways in replication stress
定义复制应激中的 WASp 依赖性途径
- 批准号:
10708353 - 财政年份:2023
- 资助金额:
$ 18.44万 - 项目类别: