Project1: The role of intravascular pressure and shear stress on tumor cell arrest, survival and proliferation in the microvascular niche
项目1:血管内压力和剪切应力对微血管微环境中肿瘤细胞停滞、存活和增殖的作用
基本信息
- 批准号:10271567
- 负责人:
- 金额:$ 31.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinAdhesionsAnimal ModelBatimastatBlood CirculationBlood PlateletsBlood VesselsBlood flowBreast Cancer CellBreast cancer metastasisCD44 geneCell AdhesionCell SurvivalCellsCessation of lifeChromatinChromatin StructureClinicalCoagulation ProcessComplementComputer ModelsDermisEndothelial CellsEndotheliumEngineeringEnvironmentEventExhibitsExposure toExtravasationFibrinGenerationsGenetic TranscriptionGeometryHematologyHumanImmuneIn VitroIndividualInterventionKnowledgeLamin Type ALeadLesionLiverMatrix MetalloproteinasesMeasuresMechanical StressMechanicsMediatingMethodsMicroscopicModelingMolecularMorphologyNeoplasm Circulating CellsNeoplasm MetastasisNuclearOrganOrgan ModelOutcomePeripheralPhenotypePhysical environmentPopulationProbabilityProcessProliferatingPropertyProteolysisResolutionRho-associated kinaseRoleSignal PathwaySourceStressStromal CellsStudy modelsSystemTechniquesTestingTherapeuticThrombusTissuesTropismbasecancer cellcopingcoping mechanismdesigndruggable targetexperienceexperimental studyextracellularhemodynamicshigh resolution imaginghuman diseaseinhibitor/antagonistinsightkinase inhibitorknock-downmigrationmonolayerneoplastic cellnovel therapeutic interventionnovel therapeuticsoverexpressionpressurepreventshear stresssingle-cell RNA sequencingstressortranscriptomicstriple-negative invasive breast carcinoma
项目摘要
Project 1: SUMMARY
Metastatic colonization requires that circulating tumor cells (CTCs) overcome the physical stressors and homeostatic
barriers that make successful metastasis an unlikely outcome. Very little is known about metastatic subpopulations, the
adaptations that allow them to circumvent homeostatic barriers, and the mechanisms used to cope with these stressors
and either proliferate or enter into dormancy. The intravascular environment is known to be inhospitable to CTCs, yet
several lines of clinical evidence indicate that physical interactions with activated platelets, fibrin thrombi, immune cells
and the formation of clusters with other cancer cells influences metastatic potential. Furthermore, the mechanism of
extravasation within the microvasculature is mediated by endothelial interactions, cytoskeletal forces, nuclear
deformations, and matrix proteolysis. It has long been recognized that metastatic tropism is determined by intrinsic
organ properties. We hypothesize that secondary colonization is the culmination of a sequence of low probability
events for which only a small subpopulation of CTCs has adapted to cope with these stressors. To investigate the
mechanisms of arrest, extravasation, and colonization we have developed in vitro vascular networks that recapitulate
the geometry and function of the microvascular networks where circulating tumor cells initiate metastatic lesions.
Importantly, we are able to precisely engineer the microvascular environment by controlling cellular constituents,
extracellular components, and the physical stressors to systematically distinguish the effect of specific perturbations on
cancer cell arrest, transmigration, and colonization with high temporal and spatial resolution. In Aim 1, we create
cancer cell thrombi and clusters to determine the effect of interactions with platelets, fibrin, and cancer cells on the
arrest, transmigration, and colonization. In Aim 2, we extend the capabilities of our microvascular platforms to
recapitulate the organ-specific microvascular environments of liver and dermis to examine combined effects of different
flow and endothelial barrier function. In Aim 3, we will use specific molecular interventions to target tumor cell
adhesion, contractility, nuclear deformability, and matrix degradation to quantify the effect on intravascular adhesion,
transendothelial migration, and long-term extravascular fate. In Aim 4, we will measure nuclear deformation and
quantify chromatin reorganization during transmigration and determine if quantitative measures of chromatin
reorganization fates extravasated cells to a dormant phenotype (Core B). Taken together, we hypothesize that
methodical in vitro observation combined with and validated by intravital studies (Project 2) and computational
modeling (Core A) will lead to new insights regarding the specific mechanisms that enable CTCs to circumvent physical
stressors. By engineering the physical environment, we will generate the knowledge leading to novel therapeutic
opportunities to block or reverse the coping phenotype.
项目 1:总结
转移定植需要循环肿瘤细胞 (CTC) 克服物理应激源和稳态
使成功转移成为不可能的结果的障碍。人们对转移性亚群知之甚少
使它们能够绕过稳态障碍的适应,以及用于应对这些压力源的机制
并增殖或进入休眠状态。众所周知,血管内环境不适合 CTC,但
多项临床证据表明,与活化的血小板、纤维蛋白血栓、免疫细胞的物理相互作用
与其他癌细胞形成簇会影响转移潜力。此外,该机制
微血管内的外渗是由内皮相互作用、细胞骨架力、核
变形和基质蛋白水解。人们很早就认识到,转移向性是由内在的决定的。
器官属性。我们假设二次定植是一系列低概率的结果
只有一小部分 CTC 能够适应应对这些压力源的事件。为了调查
我们开发了体外血管网络,概括了阻止、外渗和定植的机制
循环肿瘤细胞引发转移性病变的微血管网络的几何形状和功能。
重要的是,我们能够通过控制细胞成分来精确设计微血管环境,
细胞外成分和物理应激源,以系统地区分特定扰动对细胞的影响
具有高时间和空间分辨率的癌细胞停滞、迁移和定植。在目标 1 中,我们创建
癌细胞血栓和簇,以确定与血小板、纤维蛋白和癌细胞相互作用的影响
逮捕、移民和殖民。在目标 2 中,我们将微血管平台的功能扩展到
概括肝脏和真皮的器官特异性微血管环境,以检查不同的组合效果
血流和内皮屏障功能。在目标3中,我们将使用特定的分子干预措施来靶向肿瘤细胞
粘附、收缩性、核变形性和基质降解,以量化对血管内粘附的影响,
跨内皮迁移和长期血管外命运。在目标 4 中,我们将测量核变形和
量化轮回过程中的染色质重组并确定染色质的定量测量是否
重组使外渗细胞进入休眠表型(核心 B)。综合起来,我们假设
有条理的体外观察与活体研究(项目 2)和计算相结合并经过验证
建模(核心 A)将带来关于使 CTC 能够规避物理机制的具体机制的新见解。
压力源。通过设计物理环境,我们将产生新的治疗方法的知识
阻止或逆转应对表型的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER D KAMM其他文献
ROGER D KAMM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROGER D KAMM', 18)}}的其他基金
Mechanical determinants of organ-selective metastatic colonization, dormancy and outgrowth
器官选择性转移定植、休眠和生长的机械决定因素
- 批准号:
10490281 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Project1: The role of intravascular pressure and shear stress on tumor cell arrest, survival and proliferation in the microvascular niche
项目1:血管内压力和剪切应力对微血管微环境中肿瘤细胞停滞、存活和增殖的作用
- 批准号:
10912091 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Project1: The role of intravascular pressure and shear stress on tumor cell arrest, survival and proliferation in the microvascular niche
项目1:血管内压力和剪切应力对微血管微环境中肿瘤细胞停滞、存活和增殖的作用
- 批准号:
10490283 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Admin: Mechanical determinants of organ-selective metastatic colonization, dormancy and outgrowth
管理员:器官选择性转移定植、休眠和生长的机械决定因素
- 批准号:
10688245 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Mechanical determinants of organ-selective metastatic colonization, dormancy and outgrowth
器官选择性转移定植、休眠和生长的机械决定因素
- 批准号:
10688244 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Studying E-cadherin dynamics during extravasation and metastatic colonization
研究外渗和转移定植过程中 E-钙粘蛋白的动态
- 批准号:
10831158 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Project1: The role of intravascular pressure and shear stress on tumor cell arrest, survival and proliferation in the microvascular niche
项目1:血管内压力和剪切应力对微血管微环境中肿瘤细胞停滞、存活和增殖的作用
- 批准号:
10688247 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Admin: Mechanical determinants of organ-selective metastatic colonization, dormancy and outgrowth
管理员:器官选择性转移定植、休眠和生长的机械决定因素
- 批准号:
10490282 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Mechanical determinants of organ-selective metastatic colonization, dormancy and outgrowth
器官选择性转移定植、休眠和生长的机械决定因素
- 批准号:
10271565 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Admin: Mechanical determinants of organ-selective metastatic colonization, dormancy and outgrowth
管理员:器官选择性转移定植、休眠和生长的机械决定因素
- 批准号:
10271566 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
- 批准号:
10655616 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Project1: The role of intravascular pressure and shear stress on tumor cell arrest, survival and proliferation in the microvascular niche
项目1:血管内压力和剪切应力对微血管微环境中肿瘤细胞停滞、存活和增殖的作用
- 批准号:
10490283 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
- 批准号:
10482413 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Project1: The role of intravascular pressure and shear stress on tumor cell arrest, survival and proliferation in the microvascular niche
项目1:血管内压力和剪切应力对微血管微环境中肿瘤细胞停滞、存活和增殖的作用
- 批准号:
10688247 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
- 批准号:
10277473 - 财政年份:2021
- 资助金额:
$ 31.69万 - 项目类别: