Mechanism of Quinolone Resistance

喹诺酮类耐药机制

基本信息

  • 批准号:
    10588482
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2023-03-22
  • 项目状态:
    已结题

项目摘要

Fluoroquinolones, such as ciprofloxacin, are among the most efficacious and broad-spectrum oral antibacterials in clinical use. The World Health Organization lists them in their five “Highest Priority Critically Important Anti- microbials,” and these drugs are the most heavily prescribed antibacterials at Veterans Administration hospitals. The cellular targets of fluoroquinolones are the bacterial type II topoisomerases, gyrase and topoisomerase IV. These essential enzymes regulate DNA under- and overwinding and remove knots and tangles from the genome by generating transient double-stranded breaks in the genetic material. Fluoroquinolones act by increasing levels of double-stranded DNA breaks generated by gyrase and topoisomerase IV, which converts these enzymes into cellular toxins that fragment the genome. Both gyrase and topoisomerase IV are physiological targets for fluoro- quinolones, but their relative importance to drug action appears to be species- and drug-dependent. There is a growing crisis in antibacterial resistance and fluoroquinolone resistance is becoming prevalent. This resistance is threatening the clinical efficacy of fluoroquinolones and their use to treat US Veterans. For example, fluoroquinolones were used routinely to treat gonorrhea (which is caused by Neisseria gonorrhoeae), a sexually transmitted disease that is prevalent in the military and elevated in Veteran populations, starting in 1993. However, their use as front-line therapy was discontinued in 2006 due to the high incidence of resistance. Initial fluoroquinolone resistance is most often associated with specific mutations in gyrase and/or topoisomerase IV that occur at a serine residue (originally described as Ser83 in the GyrA subunit of Escherichia coli gyrase) and a glutamic/aspartic acid residue 4 amino acids downstream. Based on a published structure and functional studies from the Osheroff laboratory, these residues are proposed to anchor a water-metal ion bridge that serves as the primary conduit between fluoroquinolones and gyrase/topoisomerase IV. By characterizing fluoroquinolone-enzyme interactions, the PI has designed novel drugs that overcome resistance mutations in Mycobacterium tuberculosis gyrase and Bacillus anthracis gyrase and topoisomerase IV. The identification and characterization of novel agents that act against these well-validated topoisomerase targets and overcome fluoroquinolone resistance could have important ramifications for the health of Veterans. Recently, two new classes of gyrase/topoisomerase IV-targeted agents have been described that appear to overcome this resistance, Novel Bacterial Topoisomerase Inhibitors (NBTIs) and Spiropyrimidinetriones (SPTs). Members of these classes, gepotidacin (NBTI) and zoliflodacin (SPT), have advanced to phase 3 clinical trials. NBTIs are unique, as they induce single- rather than double-stranded enzyme-generated DNA breaks. However, little is known about the actions of NBTIs and SPTs against gyrase/topoisomerase IV or their basis of resistance. There is an urgent need to develop more effective drugs that display activity against fluoroquinolone-resistant bacteria. The premise underlying the proposed research is that understanding how drugs interact with their enzyme targets places us in a far better position to develop agents that overcome resistance. Thus, the specific aims of this proposal are to 1) determine the mechanistic basis for fluoroquinolone action and resistance with gyrase and topoisomerase IV across species; and 2) determine the mechanistic basis for the actions of NBTIs and SPTs against gyrase and topoisomerase IV across species. Proposed experiments will build upon previous studies from the Osheroff laboratory and preliminary data on the mechanism of bacterial type II topoisomerases and their interactions with fluoroquinolones, NBTI, and SPTs. Research will benefit greatly from the broad library of wild-type and drug-resistant gyrase/topoisomerase IV that the Osheroff laboratory has established. This library includes enzymes from B. anthracis, E. coli, Staphylococcus aureus, M. tuberculosis, Neisseria gonorrhoeae, Francisella tularensis, and Acinetobacter baumannii. Many of these pathogens routinely affect the health of US Veterans. Initial studies will focus on N. gonorrhoeae, M. tuberculosis, and E. coli as the model systems.
氟喹诺酮类(例如环丙沙星)是最有效,最广泛的口服抗细菌之一 在临床上。世界卫生组织将它们列为“至关重要的最重要的反对” 微生物”,这些药物是退伍军人管理医院中规定的抗菌剂。 氟喹诺酮类酮的细胞靶标是II型细菌拓扑异构酶,回旋酶和拓扑异构酶IV。 这些必需酶调节DNA下和越来越多的DNA,并从基因组中去除结和缠结 通过在遗传物质中产生瞬态双链断裂。氟喹诺酮通过增加水平的作用 Gyrase和Topoisomerase IV产生的双链DNA断裂,将这些酶转化为 细胞毒素碎片基因组。回旋酶和拓扑异构酶IV都是氟的物理靶标 奎诺酮,但它们对药物作用的相对重要性似乎是物种和药物依赖的。 抗菌抗性的危机日益严重,氟喹诺酮耐药性变得普遍。这 抵抗力威胁着氟喹诺酮类药物的临床效率及其用于治疗美国退伍军人的临床效率。例如, 氟喹诺酮常规用于治疗淋病(由淋病奈瑟氏菌引起) 从1993年开始,在军队中普遍存在的传播疾病在退伍军人人口中升高。 但是,由于阻力发生了很高的事件,它们在2006年停产它们作为前线疗法。 初始的氟喹诺酮耐药性最常与回旋酶和/或的特异性突变有关 在丝氨酸住宅中发生的拓扑异构酶IV(最初被描述为Escherichia的Gyra亚基中的Ser83 大肠杆菌)和下游的谷氨酸/天冬氨酸残基4氨基酸。基于出版的结构 以及来自Osheroff实验室的功能研究,提出了这些残留物来锚定水平离子 作为氟喹诺酮与回旋酶/拓扑异构酶IV之间的主要导管的桥梁。经过 PI表征了氟喹诺酮 - 酶相互作用,设计了克服抗性的新药物 结核分枝杆菌的突变和炭疽芽孢杆菌和拓扑异构酶IV的突变。 针对这些有效验证的拓扑异构酶作用的新型药物的识别和表征 靶标和克服氟喹诺酮耐药性可能会对退伍军人的健康产生重要的影响。 最近,已经描述了两种新类的回旋酶/拓扑异构酶IV靶向剂 克服这种耐药性,新型细菌拓扑异构酶抑制剂(NBTIS)和螺旋吡吡迪替翁(SPTS)。 这些类别的成员Gepotidacin(NBTI)和Zoliflodacin(SPT)已晋升为3阶段临床试验。 NBTI是独一无二的,因为它们会诱导单链酶产生的DNA断裂。然而, 关于NBTI和SPTs对回旋酶/拓扑异构酶IV的作用或它们的抗性基础知之甚少。 迫切需要开发更有效的药物,以显示抗氟喹诺酮的活性 细菌。拟议的研究的前提是,了解药物如何与其相互作用 酶的目标使我们处于更好的位置,以发展克服抗药性的药物。那,具体 该提案的目的是1)确定氟喹诺酮类动作和抵抗的机械基础 跨物种的回旋酶和拓扑异构酶IV; 2)确定NBTIS的机械基础 和针对跨物种的Gyrase和topoisomerase IV的SPT。拟议的实验将基于以前的 Osheroff实验室的研究和有关细菌II型拓扑异构酶机制的初步数据 以及它们与氟喹诺酮,NBTI和SPTS的相互作用。研究将从广泛的图书馆中受益匪浅 Osheroff实验室已经建立了野生型和耐药的回旋酶/拓扑异构酶IV。这个库 包括来自炭疽芽孢杆菌,大肠杆菌,金黄色葡萄球菌,结核分枝杆菌的酶,淋病奈瑟氏菌 Francisella tularensis和Acinetobacter Baumannii。这些病原体中的许多通常会影响我们的健康 退伍军人。最初的研究将重点介绍淋病猪笼草,结核分枝杆菌和大肠杆菌作为模型系统。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
1,3-Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Expanding Structural Diversity and the Antibacterial Spectrum.
1,3-二恶烷连接的新型细菌拓扑异构酶抑制剂:扩大结构多样性和抗菌谱。
  • DOI:
    10.1021/acsmedchemlett.2c00111
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Lu,Yanran;Mann,ChelseaA;Nolan,Sheri;Collins,JessicaA;Parker,Elizabeth;Papa,Jonathan;Vibhute,Sandip;Jahanbakhsh,Seyedehameneh;Thwaites,Mary;Hufnagel,David;Hazbón,ManzourH;Moreno,Jane;Stedman,TimothyT;Wittum,Thomas;Wozniak,D
  • 通讯作者:
    Wozniak,D
Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases.
Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases.
人类和细菌 II 型拓扑异构酶 DNA 切割过程中超螺旋旋向判别的基础。
  • DOI:
    10.1093/nar/gkad190
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Jian,JeffreyY;McCarty,KevinD;Byl,JoAnnW;Guengerich,FPeter;Neuman,KeirC;Osheroff,Neil
  • 通讯作者:
    Osheroff,Neil
Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
  • DOI:
    10.1093/nar/gkx649
  • 发表时间:
    2017-09-19
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Ashley RE;Dittmore A;McPherson SA;Turnbough CL Jr;Neuman KC;Osheroff N
  • 通讯作者:
    Osheroff N
Getting stressed over topoisomerase I poisons.
  • DOI:
    10.1016/j.chembiol.2021.04.015
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Osheroff N
  • 通讯作者:
    Osheroff N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NEIL OSHEROFF其他文献

NEIL OSHEROFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NEIL OSHEROFF', 18)}}的其他基金

Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
  • 批准号:
    10667862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
  • 批准号:
    10364870
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
  • 批准号:
    10533336
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
  • 批准号:
    10079499
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanism of Quinolone Resistance
喹诺酮类耐药机制
  • 批准号:
    10412911
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Mechanism of Quinolone Resistance
喹诺酮类耐药机制
  • 批准号:
    10047688
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
REGULATION OF CASEIN KINASE II BY EGF IN MAMMALIAN CELLS
哺乳动物细胞中 EGF 对酪蛋白激酶 II 的调节
  • 批准号:
    6236860
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
  • 批准号:
    2415346
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
  • 批准号:
    2910216
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
  • 批准号:
    6386305
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Determining the value of PBP 7/8 as an antimicrobial target for XDR-A. baumannnii
确定 PBP 7/8 作为 XDR-A 抗菌靶点的价值。
  • 批准号:
    10516081
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Determining the value of PBP 7/8 as an antimicrobial target for XDR-A. baumannnii
确定 PBP 7/8 作为 XDR-A 抗菌靶点的价值。
  • 批准号:
    9888955
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Determining the value of PBP 7/8 as an antimicrobial target for XDR-A. baumannnii
确定 PBP 7/8 作为 XDR-A 抗菌靶点的价值。
  • 批准号:
    10406232
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Determining the value of PBP 7/8 as an antimicrobial target for XDR-A. baumannnii
确定 PBP 7/8 作为 XDR-A 抗菌靶点的价值。
  • 批准号:
    10057228
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Discovery of inhibitors of the lipopolysaccharide synthesis pathway enzymes LpxA
脂多糖合成途径酶 LpxA 抑制剂的发现
  • 批准号:
    7912694
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了