Neural Processing of Speech Signals in Children Who Stutter

口吃儿童语音信号的神经处理

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Developmental stuttering is a dynamic, multifactorial neurodevelopmental disorder characterized by unintended disruptions in fluent speech production. Speech planning and production rely on intact speech sound processing, which helps develop and maintain internal speech sound models. Unstable internal speech sound models, which regulate motor signals in the speech motor articulatory network (SMAN), may contribute to disfluent speech in children who stutter (CWS). In concert with frontoparietal attention network, SMAN also modulates attention to phonetic/syllabic information in speech, particularly in difficult listening conditions. CWS often perform worse on speech processing tasks than fluent peers, especially on more challenging tasks, potentially due to inefficiencies in these auxiliary networks. However, the underlying causes of speech processing deficits in CWS remain unclear. A mechanistic understanding of speech sound processing will facilitate future development of neurobiologically informed stuttering interventions that target the specific neural deficits in CWS. The current proposal extends previous findings of atypical speech sound processing in CWS. Combining the complementary expertise of a cross-disciplinary team of investigators, the current project will evaluate the integrity of neural processes underlying speech sound encoding and the ways in which these processes are modulated by task demands using multimodal neuroimaging and systems-level computational modeling approaches. Aim 1 will measure electroencephalography (EEG) in 150 CWS and 150 fluent peers, aged 7-15 years, while children complete four tasks of varying difficulty: A) a syllable identification task (/ba/ vs /da/) in quiet; B) a continuous speech narrative comprehension task in quiet; and C & D) complex speech encoding tasks with syllables and continuous speech presented simultaneously, with attention directed either toward syllables (C) or toward the narrative (D). Directly comparing neural responses elicited in simpler and more complex listening conditions (A/C, B/D) and responses to the same stimuli when attended vs. ignored (C/D) is critical for characterizing effects of task demands on speech sound processing. State-of-the-art machine-learning approaches for EEG will enable simultaneous extraction of temporally precise neural representations of fast and slow temporal fluctuations in speech in the transformation from acoustic to syllable representations. Aim 2 will leverage functional MRI (fMRI) to assess multiple neural systems underlying speech sound processing in CWS. Employing the same tasks in the same participants as Aim 1 will allow for quantifying neural activations and representations in auditory, SMAN, and attention networks during simple and complex speech tasks. Aim 3 will develop a systems-level computational model of speech sound processing in CWS. The model, based on combined EEG and fMRI data, will simulate how interactions between neural networks mediate task performance across listening conditions. This project will provide a mechanistic understanding of speech sound processing in CWS and a unique, curated, open access, multimodal neuroimaging dataset that will be a lasting resource for the field of stuttering.
项目摘要/摘要 发育口吃是一种动态的多因素神经发育障碍,其特征是意外 流利的语音产生中断。语音计划和生产依赖于完整的语音处理, 这有助于开发和维护内部语音模型。不稳定的内部语音模型, 在语音电动网络(SMAN)中调节电机信号,可能会导致语音不足 口吃的孩子(CWS)。与额叶注意力网络一致,Sman还调节了关注 语音中的语音/音节信息,尤其是在困难的听力条件下。 CW通常在 语音处理任务比流利的同伴,尤其是在更具挑战性的任务上,可能由于效率低下 在这些辅助网络中。但是,CWS中语音处理缺陷的根本原因仍然存在 不清楚。对语音声音处理的机械理解将有助于未来的发展 针对CWS中特定神经缺陷的神经生物学知情干预措施。电流 提案扩展了CWS中非典型语音处理的先前发现。结合补充 一个跨学科团队的专业知识,当前项目将评估神经的完整性 语音声音编码的基础流程以及这些过程通过任务调节的方式 使用多模式神经影像学和系统级计算建模方法的需求。目标1意志 测量150 CW和150名流利的同龄人,年龄7-15岁的脑电图(EEG),儿童 完成不同难度的四个任务:a)安静的音节标识任务(/ba/vs/da/); b)连续 安静的语音叙事理解任务;和C&D)复杂的语音编码任务,并用音节和 连续言语同时提出,注意力指向音节(C)或朝向 叙事(D)。直接比较在更简单,更复杂的聆听条件下引起的神经反应 (a/c,b/d)和对忽略(c/d)时对同一刺激的响应对于表征效果至关重要 对语音处理的任务需求。脑电图的最先进的机器学习方法将启用 同时提取快速和缓慢的时间波动的时间精确的神经表示 从声学到音节表示的转换中的语音。 AIM 2将利用功能性MRI(fMRI) 评估CWS中语音处理的多个神经系统。在 与AIM 1相同的参与者将允许量化听觉中的神经激活和表示形式, 在简单而复杂的语音任务中,SMAN和注意力网络。 AIM 3将开发系统级 CWS中语音处理的计算模型。该模型基于组合的脑电图和fMRI数据, 将模拟神经网络之间的相互作用如何在听力条件下介导任务性能。 该项目将对CWS中的语音处理以及独特的,精心策划的, 开放访问,多模式神经影像学数据集将是口吃领域的持久资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amanda M Hampton Wray其他文献

Amanda M Hampton Wray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amanda M Hampton Wray', 18)}}的其他基金

Supplement to Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号神经处理的补充
  • 批准号:
    10610639
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号的神经处理
  • 批准号:
    10337369
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
Attentional control in children who stutter
口吃儿童的注意力控制
  • 批准号:
    10055438
  • 财政年份:
    2018
  • 资助金额:
    $ 50.96万
  • 项目类别:
Supplement to Attentional control in children who stutter
口吃儿童注意力控制的补充
  • 批准号:
    10401531
  • 财政年份:
    2018
  • 资助金额:
    $ 50.96万
  • 项目类别:

相似国自然基金

个体创业导向在数字化公司创业中的展现与效应研究:基于注意力基础观
  • 批准号:
    72302074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数据自增强与多元注意力机制的结直肠图像息肉检测
  • 批准号:
    82302310
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多头注意力机制的化学修饰siRNA药物活性预测研究
  • 批准号:
    62302079
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习与注意力机制的棉蚜图像识别及监测模型研究
  • 批准号:
    32360433
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于忆阻器的自注意力模型研究
  • 批准号:
    62304254
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10654316
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
Identifying acoustic-level and language-specific sensory processing mechanisms
识别声学级别和语言特定的感觉处理机制
  • 批准号:
    10711229
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
Characterizing the generative mechanisms underlying the cortical tracking of natural speech
表征自然语音皮质跟踪背后的生成机制
  • 批准号:
    10710717
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
Characterizing the recovery of spectral, temporal, and phonemic speech information from visual cues
表征从视觉线索中恢复频谱、时间和音位语音信息
  • 批准号:
    10563860
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了