Multi-modal machine learning to guide adjuvant therapy in surgically resectable colorectal cancer

多模式机器学习指导可手术切除结直肠癌的辅助治疗

基本信息

  • 批准号:
    10588103
  • 负责人:
  • 金额:
    $ 62.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-02 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death worldwide. There is an unmet need for accurate, cost-efficient, and broadly accessible risk- stratification tools to identify patients at increased risk of recurrence , who are most likely to benefit from adjuvant therapy. Current standard-of-care risk stratification approaches are inadequate. Every CRC surgical candidate undergoes pathologic and radiologic evaluation of their tumor; these two modalities represent a rich, readily accessible and, thus far, underutilized resource for developing new risk-stratification tools. Deep learning (DL) has demonstrated great potential for augmenting physicians on an increasing range of diagnostic and prognostic tasks in pathology, radiology, and clinical medicine. We hypothesize that applying integrated DL-based analysis to multimodal (pathologic, radiologic, and electronic medical record (EMR)) data will yield greatly improved stratification of CRC patients for adjuvant treatment planning. We propose to build the first comprehensive, publicly-available, expert-annotated multimodal CRC dataset for deep learning, containing annotated CRC pathology whole-slide images (WSI), preoperative CT and MRI images, and structured clinical EMR data. Using this dataset, we will develop both single and multi-modality DL models for risk stratification of surgically-resectable (Stage I-III) CRC patients.To test our hypothesis, we will compare the performance of multi-modality models with that of single-modality models and existing methods of stratification. This project benefits from the complementary expertise and resources of a unique interdisciplinary team spanning the fields of machine learning, pathology, radiology, and oncology.
项目概要/摘要 结直肠癌 (CRC) 是第三大最常见的恶性肿瘤,也是导致结直肠癌的第二大原因。 全球癌症死亡人数。对准确、具有成本效益且可广泛获取的风险的需求尚未得到满足 分层工具来识别复发风险增加的患者,他们最有可能从中受益 辅助治疗。目前的护理标准风险分层方法还不够。每一次结直肠癌手术 候选人对其肿瘤进行病理学和放射学评估;这两种方式代表了一种丰富的、 用于开发新的风险分层工具的资源很容易获得,但迄今为止尚未得到充分利用。深的 学习(DL)已显示出巨大的潜力,可以增强医生的诊断范围 病理学、放射学和临床医学中的预后任务。我们假设应用集成 对多模态(病理、放射学和电子病历 (EMR))数据进行基于深度学习的分析将产生 大大改善了 CRC 患者辅助治疗计划的分层。我们建议建造第一个 用于深度学习的全面、公开、专家注释的多模态 CRC 数据集,包含 带注释的 CRC 病理全切片图像 (WSI)、术前 CT 和 MRI 图像以及结构化临床 电子病历数据。使用该数据集,我们将开发单模态和多模态深度学习模型,用于风险分层 可手术切除(I-III 期)CRC 患者。为了检验我们的假设,我们将比较 多模态模型与单模态模型和现有的分层方法。这个项目 受益于跨领域的独特跨学科团队的互补专业知识和资源 机器学习、病理学、放射学和肿瘤学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeanne Shen其他文献

Jeanne Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

弹性超声预测免疫调节型三阴性乳腺癌新辅助化疗联合免疫治疗的机制研究
  • 批准号:
    82371978
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
食管癌新辅助治疗中靶向化疗耐药改善免疫治疗抵抗的机制发现和功能解析
  • 批准号:
    82320108016
  • 批准年份:
    2023
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目
新辅助化疗联合PD-1抗体治疗肺鳞癌中NR4A1调控肿瘤浸润CD8+T细胞耗竭的机制研究
  • 批准号:
    82273083
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
MEIS2通过NF-κB/UXT/p65复合体调节H2AFJ转录参与直肠癌放化疗抵抗的作用和机制研究
  • 批准号:
    81902378
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
多模态超声组学精准预测直肠癌新辅助化疗疗效的实验研究
  • 批准号:
    81701719
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of contrast agents to facilitate image-guided surgery
开发造影剂以促进图像引导手术
  • 批准号:
    10810184
  • 财政年份:
    2023
  • 资助金额:
    $ 62.96万
  • 项目类别:
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
  • 批准号:
    10708575
  • 财政年份:
    2023
  • 资助金额:
    $ 62.96万
  • 项目类别:
Targeting Tryptophan Metabolism in Rectal Cancer
靶向直肠癌中的色氨酸代谢
  • 批准号:
    10754178
  • 财政年份:
    2023
  • 资助金额:
    $ 62.96万
  • 项目类别:
Neoadjuvant Neratinib in Stage I-III HER2-mutated Lobular Breast Cancer
新辅助来那替尼治疗 I-III 期 HER2 突变小叶乳腺癌
  • 批准号:
    10660734
  • 财政年份:
    2023
  • 资助金额:
    $ 62.96万
  • 项目类别:
Elucidating a novel WNT4 regulatory axis as a driver of gynecologic cancer health disparities
阐明新的 WNT4 调节轴作为妇科癌症健康差异的驱动因素
  • 批准号:
    10773991
  • 财政年份:
    2023
  • 资助金额:
    $ 62.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了