In Vivo Base Editing for Precision Oncology Models
精准肿瘤模型的体内碱基编辑
基本信息
- 批准号:10583528
- 负责人:
- 金额:$ 59.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAddressAdenineAllelesAnimal ModelBioinformaticsBiologicalBiological AssayBiological ModelsBiologyCRISPR/Cas technologyCancer Cell GrowthCancer ModelCell TherapyCellsClinicalClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsColorectal CancerComplexCytidineCytidine DeaminaseDNADNA BindingDNA Sequence AlterationDataDeaminaseDevelopmentDiseaseDisease modelEnzymesFluorescenceGenerationsGenesGeneticGenetic ModelsGenetically Engineered MouseGenomeGenome engineeringGenomic SegmentGenomicsGoalsHumanHuman BiologyIndividualKnock-inMalignant NeoplasmsMissense MutationModelingModificationMouse StrainsMusMutagenesisMutateMutationNonsense MutationOncogenesOncogenicOncologyPatientsPositioning AttributePre-Clinical ModelProliferatingPropertyPublishingRecurrenceRecurrent Malignant NeoplasmReporterResistanceResourcesSingle Nucleotide PolymorphismSiteSpeedSystemTP53 geneTechnologyTestingTissuesTransgenic MiceTranslational ResearchTumor BiologyValidationWorkbase editingcancer recurrencecancer typeclinical sequencingdesigndominant genetic mutationeffective therapyexceptional respondersflexibilitygene functiongenome editinghuman diseasehuman modelin vivoin vivo Modelindividual responseinsertion/deletion mutationmutantnovelpancreatic cancer modelpersonalized medicineprecision oncologyrepairedresponsescreeningsensortargeted treatmenttooltranslational modeltreatment responsetumortumor initiationtumor progressiontumorigenesis
项目摘要
PROJECT SUMMARY
Genetic mutation is the predominant driver of cancer cell growth and therapy resistance. In fact, a major goal of
personalized medicine is to identify specific genetic changes in individual tumors with the notion that defining
these changes will guide more effective and targeted treatment. While this precision oncology approach shows
clinical promise, ongoing tumor sequencing efforts continue to identify potential new disease drivers and new
mutations. How these uncharacterized mutant alleles contribute to disease is often not obvious, and requires
functional examination. Genetically engineered mouse models (GEMMs) provide an ideal tool to investigate the
consequences of genetic changes on tumor biology, yet existing approaches are not fast or precise enough to
recreate the spectrum of genetic alterations seen in human cancer. We and others have used CRISPR-based
genome editing to accelerate the generation of complex, genetically defined animal models. Yet, while CRISPR
systems are fast and simple, the basic tools are imprecise in that they cause insertions and deletions that ablate
gene function but cannot mimic the single nucleotide variants most often seen in human cancer.
To build in vivo systems that recapitulate specific human cancer-associated mutations, our project exploits new
CRISPR tools that couple Cas9 to cytidine deaminase enzymes and enable direct DNA mutagenesis at defined
genomic regions. ‘Base editing’ (BE) technology offers far greater efficiency and flexibility than existing homology
directed repair (HDR) approaches by eliminating the need to deliver exogenous DNA templates. We have
systematically optimized the expression and activity of BE enzymes to increase the efficiency of genome
modification and established a bioinformatic and experimental pipeline to predict and validate BE tools that
recreate known and novel cancer mutations.
In Aim 1, building from extensively optimized BE enzymes, we will generate a range of knock-in transgenic mice
to maximize the number of possible genomic regions that can be mutated using BE, and validate the activity of
these mice using a new fluorescence-based reporter system. Further, using a novel sensor assay, we will identify
all human and mouse sgRNAs that can target recurrent cancer-associated mutation sites. Together, this work
will define the BE efficiency of thousands of independent sgRNAs, and establish the first in vivo somatic base
editing platforms. In Aim 2 we will use our in vivo BE tools to generate novel animal models of pancreatic and
colorectal cancer, and examine the consequences of distinct cancer-associated mutations in each disease. This
work will not only offer a new understanding of key oncogenic mutations, it will provide critical validation of the
utility of in vivo BE in multiple cancer settings.
By providing an easy and efficient path to capture the diversity of human disease alleles, we believe this new
precision editing platform has the potential to fundamentally change the way we design and implement mouse
cancer models for translational research.
项目概要
基因突变是癌细胞生长和治疗耐药性的主要驱动因素。事实上,这是癌症治疗的一个主要目标。
个性化医疗是识别个体肿瘤的特定基因变化,其概念是定义
这些变化将指导更有效和有针对性的治疗,而这种精准肿瘤学方法表明。
临床前景,正在进行的肿瘤测序工作继续识别潜在的新疾病驱动因素和新的
这些未表征的突变等位基因如何导致疾病通常并不明显,并且需要研究。
基因工程小鼠模型(GEMM)提供了研究功能的理想工具。
遗传变化对肿瘤生物学的影响,但现有方法不够快或不够精确
我们和其他人已经使用基于 CRISPR 的技术重现了人类癌症中所见的遗传改变谱。
然而,基因组编辑可加速复杂的、基因定义的动物模型的生成。
系统快速而简单,基本工具不精确,因为它们会导致插入和删除,从而消除
基因功能,但不能模拟人类癌症中最常见的单核苷酸变异。
为了构建重现特定人类癌症相关突变的体内系统,我们的项目利用了新的
CRISPR 工具可将 Cas9 与胞苷脱氨酶偶联,并在指定的位置实现直接 DNA 诱变
“碱基编辑”(BE)技术比现有同源性提供更高的效率和灵活性。
我们拥有直接修复 (HDR) 方法,无需提供外源 DNA 模板。
系统优化BE酶的表达和活性,提高基因组效率
修改并建立了生物信息学和实验管道来预测和验证 BE 工具
重现已知和新的癌症突变。
在目标 1 中,我们将通过主要优化的 BE 酶构建一系列敲入转基因小鼠
最大化可以使用 BE 突变的可能基因组区域的数量,并验证
这些小鼠使用新的基于荧光的报告系统,此外,我们将使用新型传感器测定来识别。
所有能够靶向复发性癌症相关突变位点的人类和小鼠 sgRNA 共同发挥作用。
将定义数千个独立sgRNA的BE效率,并建立第一个体内体细胞碱基
在目标 2 中,我们将使用我们的体内 BE 工具生成胰腺和胰腺的新型动物模型。
结直肠癌,并检查每种疾病中不同癌症相关突变的后果。
这项工作不仅将提供对关键致癌突变的新认识,还将提供关键的验证
体内BE在多种癌症环境中的效用。
通过提供一种简单有效的途径来捕获人类疾病等位基因的多样性,我们相信这种新方法
精确编辑平台有可能从根本上改变我们设计和实现鼠标的方式
用于转化研究的癌症模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LUKAS Edward DOW其他文献
LUKAS Edward DOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LUKAS Edward DOW', 18)}}的其他基金
Tumor selective inhibition of the WNT pathway
WNT 通路的肿瘤选择性抑制
- 批准号:
10503200 - 财政年份:2022
- 资助金额:
$ 59.04万 - 项目类别:
Tumor selective inhibition of the WNT pathway
WNT 通路的肿瘤选择性抑制
- 批准号:
10708875 - 财政年份:2022
- 资助金额:
$ 59.04万 - 项目类别:
Biology of R-Spondin-Induced Sensitization to Asparaginase in Colorectal Cancer
R-Spondin 诱导结直肠癌天冬酰胺酶敏感性的生物学
- 批准号:
10434148 - 财政年份:2021
- 资助金额:
$ 59.04万 - 项目类别:
Biology of R-Spondin-Induced Sensitization to Asparaginase in Colorectal Cancer
R-Spondin 诱导结直肠癌天冬酰胺酶敏感性的生物学
- 批准号:
10297173 - 财政年份:2021
- 资助金额:
$ 59.04万 - 项目类别:
Biology of R-Spondin-Induced Sensitization to Asparaginase in Colorectal Cancer
R-Spondin 诱导结直肠癌天冬酰胺酶敏感性的生物学
- 批准号:
10661702 - 财政年份:2021
- 资助金额:
$ 59.04万 - 项目类别:
In Vivo Base Editing for Precision Oncology Models
精准肿瘤模型的体内碱基编辑
- 批准号:
10380170 - 财政年份:2019
- 资助金额:
$ 59.04万 - 项目类别:
In Vivo Base Editing for Precision Oncology Models
精准肿瘤模型的体内碱基编辑
- 批准号:
9893848 - 财政年份:2019
- 资助金额:
$ 59.04万 - 项目类别:
In Vivo Base Editing for Precision Oncology Models
精准肿瘤模型的体内碱基编辑
- 批准号:
10115643 - 财政年份:2019
- 资助金额:
$ 59.04万 - 项目类别:
Progression, response, and resistance of RSPO fusion colorectal cancer
RSPO 融合结直肠癌的进展、反应和耐药性
- 批准号:
10222596 - 财政年份:2018
- 资助金额:
$ 59.04万 - 项目类别:
Progression, response, and resistance of RSPO fusion colorectal cancer
RSPO 融合结直肠癌的进展、反应和耐药
- 批准号:
9751231 - 财政年份:2018
- 资助金额:
$ 59.04万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 59.04万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 59.04万 - 项目类别:
Development of a new class of BLVRB-targeted redox therapeutics in breast cancer
开发一类新型 BLVRB 靶向乳腺癌氧化还原疗法
- 批准号:
10759653 - 财政年份:2023
- 资助金额:
$ 59.04万 - 项目类别:
Microvascular Neuroimaging in Age-related Alzheimer's Disease and Tauopathies
年龄相关性阿尔茨海默病和 Tau蛋白病的微血管神经影像学
- 批准号:
10738372 - 财政年份:2023
- 资助金额:
$ 59.04万 - 项目类别:
PGRMC Proteins as Markers of Fertility and Overall Health Status
PGRMC 蛋白作为生育力和整体健康状况的标志
- 批准号:
10729068 - 财政年份:2023
- 资助金额:
$ 59.04万 - 项目类别: