Smart Cuff: Multi-Parameter Hemodynamic Monitoring via a Single Convenient Device
智能袖带:通过单个便捷设备进行多参数血流动力学监测
基本信息
- 批准号:10583061
- 负责人:
- 金额:$ 71.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-10 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAlgorithmsAutomated Clinical Decision SupportBlood PressureBlood Pressure MonitorsBlood flowCardiac OutputCardiovascular systemCaringCathetersClinicalCollectionComplexComputer softwareCustomDataDetectionDevicesDiagnosisDiastolic blood pressureEFRACEchocardiographyEnhancement TechnologyGoalsHealth Care CostsHospital CostsHospitalsHypotensionIntensive CareInterventionLeft Ventricular Ejection FractionLiquid substanceMachine LearningManualsMeasurementMeasuresMedical centerMonitorOperative Surgical ProceduresOutcomePatient CarePatient-Focused OutcomesPatientsPhysiologicalPopulationPrecision therapeuticsPulmonary artery structurePulse PressureReal-Time SystemsResearch Project GrantsSurgical ManagementSystems IntegrationTechnologyTestingTimeTitrationsTrainingTranslatingUniversitiesVariantalgorithm trainingarmclinical carecohortcommercializationheart functionhemodynamicsimprovedinnovationintelligent algorithmmachine learning algorithmmonitoring devicenovelpressurereal time monitoring
项目摘要
PROJECT SUMMARY/ABSTRACT
Multi-parameter hemodynamic monitoring is needed to manage surgical and intensive care patients.
Monitoring blood pressure (BP), cardiac output (CO), and left ventricular ejection fraction (EF), in
particular, permits detection of frequent hypotension and hemodynamic instability, diagnosis of the
cause for selecting appropriate therapy, and titration of interventions (e.g., goal-directed therapy).
However, measurement of these three hemodynamic variables currently requires multiple devices
that are invasive, manual, or specialized. While the oscillometric arm cuff device is non-invasive,
automated, and standard, it only estimates BP from the measured cuff pressure waveform via a
population average algorithm that does not maintain accuracy over the clinical range. The overall
goal of this project is to extend the ubiquitous arm cuff device for accurate and convenient multi-
parameter hemodynamic monitoring via smart algorithms. The specific aims are: (1) to build an arm
cuff device for recording cuff pressure waveforms; (2) to simultaneously acquire patient data with this
and reference devices for algorithm training; (3) to develop and incorporate algorithms for accurately
computing BP, CO, and EF from the cuff pressure waveform based on the training data; and (4) to
validate the real-time Smart Cuff against reliable reference measurements in patients. The device will
be developed to control the cuff pressure and incorporate custom algorithms. The cuff pressure
waveform via the device and reference BP, CO, and EF via arterial and pulmonary artery catheters
and echocardiography will be recorded before and after clinical interventions in many surgical and
intensive care patients. These training data will be analyzed to refine or adapt previous physiologic
algorithms and to investigate potentially superior machine learning algorithms for best estimation of
the three hemodynamic variables. The final algorithms will be implemented for a real-time device,
and the integrated system will be tested against the same reference measurements during clinical
interventions but from new patients. Achievement of the specific aims will be followed by a
translational project to bring the Smart Cuff to patient care and a research project to extend the
device capabilities including addition of automated clinical decision support. Ultimately, these efforts
may help in improving patient outcomes and reducing healthcare costs in the near-term.
项目摘要/摘要
需要多参数血液动力学监测来管理手术和重症监护患者。
监测血压(BP),心输出量(CO)和左心室射血分数(EF)
特别,允许检测频繁的低血压和血流动力学不稳定性,诊断
选择适当的治疗和滴定干预措施的原因(例如,目标定向治疗)。
但是,这三个血液动力学变量的测量当前需要多个设备
具有侵入性,手动或专业的。虽然振荡臂袖带是非侵入性的,但
自动化和标准,它仅通过A估算测得的袖口压力波形的BP
在临床范围内无法保持准确性的人群平均算法。总体
该项目的目标是扩展无处不在的手臂袖口设备,以便准确且方便
参数血液动力学通过智能算法监测。具体目的是:(1)建造一个手臂
用于记录袖口压力波形的袖口装置; (2)同时获取患者数据
和算法培训的参考设备; (3)开发和合并算法以准确
根据训练数据,从袖口压力波形中计算BP,CO和EF; (4)到
验证实时智能袖带,以防止患者的可靠参考测量值。设备将
开发以控制袖口压力并结合自定义算法。袖口压力
通过设备和参考BP,CO和EF通过动脉和肺动脉导管的波形
并将超声心动图记录在许多手术和
重症监护患者。这些培训数据将进行分析以完善或适应以前的生理学
算法并研究潜在的卓越机器学习算法,以最佳估计
三个血液动力学变量。最终算法将用于实时设备,
并且将在临床期间针对相同的参考测量值测试集成系统
干预措施,但来自新患者。特定目标的实现将是
转化项目将智能袖口带到患者护理和研究项目以扩展
设备功能,包括增加自动临床决策支持。最终,这些努力
可能有助于改善患者的结果并在短期内降低医疗保健费用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAMAKRISHNA MUKKAMALA其他文献
RAMAKRISHNA MUKKAMALA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAMAKRISHNA MUKKAMALA', 18)}}的其他基金
A Smartphone-Based Device for Cuff-Less and Calibration-Free Blood Pressure Monitoring
基于智能手机的无袖带、免校准血压监测设备
- 批准号:
9927703 - 财政年份:2019
- 资助金额:
$ 71.7万 - 项目类别:
A Smartphone-Based Device for Cuff-Less and Calibration-Free Blood Pressure Monitoring
基于智能手机的无袖带、免校准血压监测设备
- 批准号:
10300143 - 财政年份:2019
- 资助金额:
$ 71.7万 - 项目类别:
Unobtrusive and Affordable Blood Pressure Monitoring Via Pulse Transit Time
通过脉搏传输时间进行不引人注目且经济实惠的血压监测
- 批准号:
8745161 - 财政年份:2014
- 资助金额:
$ 71.7万 - 项目类别:
Unobtrusive and Affordable Blood Pressure Monitoring Via Pulse Transit Time
通过脉搏传输时间进行不引人注目且经济实惠的血压监测
- 批准号:
9326295 - 财政年份:2014
- 资助金额:
$ 71.7万 - 项目类别:
Unobtrusive and Affordable Blood Pressure Monitoring Via Pulse Transit Time
通过脉搏传输时间进行不引人注目且经济实惠的血压监测
- 批准号:
8898794 - 财政年份:2014
- 资助金额:
$ 71.7万 - 项目类别:
Non-Invasive Monitoring of Central Blood Pressure in Humans
人体中心血压的无创监测
- 批准号:
8227726 - 财政年份:2012
- 资助金额:
$ 71.7万 - 项目类别:
Non-Invasive Monitoring of Central Blood Pressure in Humans
人体中心血压的无创监测
- 批准号:
8454415 - 财政年份:2012
- 资助金额:
$ 71.7万 - 项目类别:
Continuous Cardiac Output & Filling Pressure Monitoring
连续心输出量
- 批准号:
7229994 - 财政年份:2006
- 资助金额:
$ 71.7万 - 项目类别:
Continuous Cardiac Output & Filling Pressure Monitoring
连续心输出量
- 批准号:
7037157 - 财政年份:2006
- 资助金额:
$ 71.7万 - 项目类别:
Noninvasive Quantification of the Resistance Baroeflex
阻力 Baroeflex 的无创定量
- 批准号:
7140428 - 财政年份:2005
- 资助金额:
$ 71.7万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 71.7万 - 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 71.7万 - 项目类别:
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
- 批准号:
10727737 - 财政年份:2023
- 资助金额:
$ 71.7万 - 项目类别:
AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
- 批准号:
10383494 - 财政年份:2022
- 资助金额:
$ 71.7万 - 项目类别:
FIrst REsponse BUrn Diagnostic System (FIRE-BUDS)
第一响应烧伤诊断系统 (FIRE-BUDS)
- 批准号:
10392084 - 财政年份:2022
- 资助金额:
$ 71.7万 - 项目类别: