Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
基本信息
- 批准号:10584324
- 负责人:
- 金额:$ 53.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Neuropsychiatric (mental, behavioral and neurological) disorders are increasingly dominating the burden on
US healthcare. Yet, our understanding of such disorders is largely restricted to a description of symptoms, and
the treatments remain palliative. Several large-scale efforts, including the Human Connectome Project (HCP)
and the BRAIN Initiative call for the development of technologies to map brain circuits to improve our
understanding of brain function. Magnetic resonance imaging (MRI) plays a central role in these initiatives as a
powerful non-invasive methodology to study the human brain, including anatomical, functional and diffusion
imaging. Yet, MRI methods have major limitations on achievable resolutions and acquisition speed. These
affect both high resolution whole brain acquisitions that aim to image voxel volumes that contain only a few
thousand neurons for improved understanding of the brain, and also the more commonly utilized research and
clinical protocols. This, in turn, necessitates improved reconstruction methods to facilitate faster acquisitions.
Several strategies have been proposed for improved reconstruction of MRI data. Recently, deep learning (DL)
has emerged as an alternative for accelerated MRI showing improved quality over conventional approaches.
However, it also faces challenges that hinder its utility, especially in high-resolution brain MRI, including need
for large databases of reference data for training, concerns about generalization to unseen pathologies not
well-represented in training datasets, robustness issues related to recovery of fine structures, and difficulties in
training networks for processing multi-dimensional image series. In this proposal, we will develop and validate
robust and efficient learning strategies for high-resolution brain DL MRI reconstruction without large databases
of reference data. We will develop self-supervised learning methods for training with small referenceless
databases or in a scan-specific manner. We will augment these with uncertainty-guided training strategies for
improved recovery of areas with high uncertainty, methods for synergistically combining random matrix theory
based denoising with DL reconstruction, and memory-efficient distributed learning techniques to process large
image series. Our developments will enable at least a two-fold improvement in acceleration rates over existing
protocols, and at higher resolutions. They will be validated on HCP-style acquisitions with extensive
anatomical, functional and microstructural evaluation at multiple resolutions. Finally, we will curate a whole
brain sub-millimeter HCP-style database for studying functional and structural connectivity at the level cortical
layers and columns, while also facilitating technical developments for new modeling, image processing and
reconstruction algorithms. Successful completion of this project has the potential to transform the scales that
can be imaged with MRI, improve the quality of existing protocols and/or significantly reduce scan times,
leading to reductions in healthcare costs, improved diagnosis and/or increased patient throughput.
项目摘要/摘要
神经精神病学(心理,行为和神经系统疾病)越来越多地主导着负担
美国医疗保健。然而,我们对这种疾病的理解在很大程度上仅限于症状的描述,以及
治疗仍然是姑息治疗的。几项大规模的努力,包括人类连接项目(HCP)
大脑倡议要求开发技术来绘制脑电路以改善我们的
了解大脑功能。磁共振成像(MRI)在这些计划中起着核心作用
强大的非侵入性方法研究人脑,包括解剖,功能和扩散
成像。但是,MRI方法对可实现的决议和获取速度有重大限制。这些
影响两个高分辨率的全脑习得,旨在成像仅包含少量体素的体量
千位神经元,以提高对大脑的理解,以及更常见的研究和
临床方案。反过来,这需要改进的重建方法以促进更快的收购。
已经提出了一些改进MRI数据重建的策略。最近,深度学习(DL)
已成为加速MRI的替代方法,显示出比常规方法提高的质量。
但是,它也面临着阻碍其实用性的挑战,尤其是在高分辨率的大脑MRI中,包括需求
对于用于培训的参考数据的大量数据库,关于概括而不是看不见病理的关注
在培训数据集,与恢复精细结构相关的鲁棒性问题以及困难方面有很好的代表
用于处理多维图像系列的培训网络。在此提案中,我们将开发和验证
高分辨率大脑DL MRI重建的强大而有效的学习策略,没有大数据库
参考数据。我们将开发自我监督的学习方法,以培训小型无引用
数据库或特定于扫描的方式。我们将通过不确定性指导的培训策略来扩大这些
改善不确定性高的区域的恢复,协同结合随机矩阵理论的方法
基于DL重建和记忆效率的分布式学习技术,以处理大型
图像系列。我们的发展将使加速度至少提高到现有的加速度至少两倍
协议,以及更高的分辨率。他们将在HCP风格的收购中得到验证
多种分辨率的解剖学,功能和微观结构评估。最后,我们将整体策划
大脑亚毫米计HCP风格的数据库,用于研究水平皮质的功能和结构连接性
层和列,同时还为新建模,图像处理和
重建算法。该项目的成功完成有可能改变量表
可以使用MRI成像,提高现有协议的质量和/或大大减少扫描时间,
导致降低医疗保健成本,改善诊断和/或增加患者吞吐量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Mehmet Akcakaya的其他基金
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:1038369410383694
- 财政年份:2020
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Novel Quantitative MRI Techniques for the Assessment of Cardiac Fibrosis without Gadolinium Contrast
无需钆对比即可评估心脏纤维化的新型定量 MRI 技术
- 批准号:1031901110319011
- 财政年份:2020
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:1017190210171902
- 财政年份:2020
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Novel Quantitative MRI Techniques for the Assessment of Cardiac Fibrosis without Gadolinium Contrast
无需钆对比即可评估心脏纤维化的新型定量 MRI 技术
- 批准号:99776709977670
- 财政年份:2020
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:1060105610601056
- 财政年份:2020
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Rapid Comprehensive Cardiac MRI Exam for Diagnosis of Coronary Artery Disease
快速综合心脏 MRI 检查诊断冠状动脉疾病
- 批准号:1003097810030978
- 财政年份:2020
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Novel Accelerated Contrast-Enhanced High Resolution Coronary MRI
新型加速对比增强高分辨率冠状动脉 MRI
- 批准号:82240368224036
- 财政年份:2012
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Novel Accelerated Contrast-Enhanced High Resolution Coronary MRI
新型加速对比增强高分辨率冠状动脉 MRI
- 批准号:84717708471770
- 财政年份:2012
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
相似国自然基金
考虑水平、垂直加速度影响的地震滑坡危险性快速评价方法研究
- 批准号:42307269
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
剪切场下熔体真实流动状态调控及其对结晶影响的研究
- 批准号:51803192
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
射电源结构效应对太阳系质心加速度估计的影响
- 批准号:11603060
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
强震动观测台站建筑物对强地面运动的影响及其处理方法研究
- 批准号:51608098
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
封装效应对微加速度计稳定性影响的基础问题研究
- 批准号:U1530132
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:联合基金项目
相似海外基金
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:1066361310663613
- 财政年份:2023
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:1081992710819927
- 财政年份:2023
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:1083122610831226
- 财政年份:2023
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:1064561010645610
- 财政年份:2023
- 资助金额:$ 53.06万$ 53.06万
- 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:1074007910740079
- 财政年份:2023
- 资助金额:$ 53.06万$ 53.06万
- 项目类别: